新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 電壓關(guān)斷型緩沖電路分析及設(shè)計方法

電壓關(guān)斷型緩沖電路分析及設(shè)計方法

作者: 時間:2013-03-07 來源:網(wǎng)絡(luò) 收藏

  引言

  近年來Snubber電路有了較大的發(fā)展, 但目前其性能并未得到合理優(yōu)化,其應(yīng)用也不盡如人意。這主要是由于現(xiàn)場應(yīng)用人員并未十分重視RCD Snubber的基本類型、相關(guān)特性及使用場合的限制,也不重視RCD Snubber電路的理論分析,只是憑經(jīng)驗和實際工程調(diào)試,這在一定程度上降低了工程設(shè)計的工作效率。

基于上述原因,本文較深入地討論了兩種常用模式的RCD Snubber電路:抑制電壓上升率模式與電壓鉗位模式,詳細分析了其各自的工作原理,給出了相應(yīng)的計算公式,最后通過實驗提出了電路的優(yōu)化設(shè)計方法。

  RCD Snubber電路的基本類型及其工作原理

  RCD Snubber是一種能耗式緩沖器,分為抑制電壓上升率模式和電壓鉗位模式兩種類型,習慣上前者稱為RCD Snubber電路,而后者則稱為RCD Clamp電路。

  為了分析方便,以下的分析或舉例均針對反激電路拓撲,開關(guān)器件為功率MOSFET。

電壓關(guān)斷型緩沖電路分析及設(shè)計方法

  圖1 常用的RCD Snubber電路

  抑制電壓上升率模式

  對于功率MOSFET來講,其電流下降的速度較GTR或IGBT快得多,其關(guān)斷損耗的數(shù)值要比GTR或IGBT小,但是這個損耗對整個小功率的電源系統(tǒng)也是不容忽視的。因此提出了抑制電壓上升率的RCD Snubber

  如圖1所示,在開關(guān)管關(guān)斷瞬間,反激變壓器的漏感電流需要按原初始方向繼續(xù)流動,該電流將分成兩路:一路在逐漸關(guān)斷的開關(guān)管繼續(xù)流動;另一路通過Snubber電路的二極管Ds向電容Cs充電。由于Cs上的電壓不能突變,因而降低了開關(guān)管關(guān)斷電壓上升的速率,并把開關(guān)管的關(guān)斷功率損耗轉(zhuǎn)移到了Snubber電路。如果Cs足夠大,開關(guān)管電壓的上升及其電流的下降所形成的交叉區(qū)域?qū)M一步降低,可以進一步降低開關(guān)管的關(guān)斷損耗。但是Cs的取值也不能過大,因為在每一個關(guān)斷期間的起始點(也就是開通期間的結(jié)束點),Cs必須放盡電荷以對電壓上升率進行有效的抑制;而在關(guān)斷期間的結(jié)束點,Cs雖然能降低開關(guān)管電壓的上升時間,但其端電壓最終會達到()(為忽略漏感時的電壓尖峰,為次級對初級的反射電壓)。

  關(guān)管導通的瞬間,Cs將通過電阻Rs與M所形成的回路來放電。Snubber的放電電流將流過開關(guān)管,會產(chǎn)生電流突波,并且如果某個時刻占空比變窄,電容將不能放盡電荷而不能達到降低關(guān)斷損耗的目的。

  可見,Snubber電路僅在開關(guān)過渡瞬間工作,降低了開關(guān)管的損耗,提高了電路的可靠性,電壓上升率的減慢也降低了高頻電磁干擾。

  電壓鉗位模式

  RCD Clamp不同于Snubber模式,其目的是限制開關(guān)管關(guān)斷瞬間其兩端的最大尖峰電壓,而開關(guān)管本身的損耗基本不變。在工作原理上電壓鉗位模式RC的放電時間常數(shù)比抑制電壓上升率模式更長。

  以圖2為例分析電路的工作過程,并且使用工作于反激式變換器的變壓器模型。反激式變壓器主要由理想變壓器、激磁電感與漏感組成。

反激式變換器的Clamp電路

  圖2反激式變換器的Clamp電路

  會發(fā)生高頻諧振而使開關(guān)管DS兩端電壓升高,但是由于漏感產(chǎn)生的VSPIKE的能量能夠及時轉(zhuǎn)移到CC中,而使CC的端電壓從次級反射電壓VOR上升到最大值(VOR+VSPIKE);當開關(guān)管導通時,CC通過電阻RC放電,這樣在下個周期開關(guān)管關(guān)斷前,能夠使得CC的端電壓從(VOR+VSPIKE)恢復到VOR。這樣,只要能夠合理設(shè)置時間常數(shù),就能保證在一個周期內(nèi)將漏感轉(zhuǎn)移到CC中的能量釋放完畢。

  CC端電壓在理想情況下基本上是恒定的,僅在充、放電時存在一個變化量VSPIKE。而漏感的電流始終和初級電流串聯(lián)的,所以漏感電流的下降過程就是次級電流的上升過程。而漏感電流的下降過程是由RCD Clamp電路CC上的壓降和反射電壓VOR的差值決定的,差值越大電流下降就越快,能量傳輸也越快,因而效率會明顯提高。所以,此時開關(guān)管DS的電壓為(+VOR+VSPIKE)。這樣漏感兩端的電壓將為VSPIKE(一般可取10V~20V),如圖3所示。由法拉第定律可知因漏感引起的初、次級能量傳輸?shù)难舆t時間為:(8)其中,IP為在開關(guān)管關(guān)斷時電感的峰值電流。

關(guān)斷瞬間開關(guān)管DS電壓與其電流波形

圖3 關(guān)斷瞬間開關(guān)管DS電壓與其電流波形

  如果電路參數(shù)選擇適當,RCD Clamp電路兩端的電壓尖峰將通過CC來吸收,并且需要達到能量平衡,因漏感而產(chǎn)生的能量將完全消耗在RC上。 

  實驗結(jié)果分析

  實驗中采用一個輸出功率為3.5W的反激式開關(guān)電源樣機,其主要參數(shù)如下:
PO=3.5W;VIN=220VAC;fs=43kHz;IP=0.1A;LP=6.63mH ;=871.3mH;NP=75;NS=12;次級對初級的反射電壓,取VOR=80V。另取VSPIKE=20V;開關(guān)管選用SMP4N100,其tr=18ns。

  經(jīng)計算得出:

  CS=2.143pF,RS=4.2k健?由于幾pF的電容不容易得到,故可以用10個22pF的瓷介電容串聯(lián)來等效代用。有RCD Snubber電容時,開關(guān)管兩端的電壓VDS波形見圖4;無Snubber電容的VDS波形見圖5。

有Clamp無Snubber的波形

  圖4 有Clamp無Snubber的波形

Clamp

  圖5 Clamp+Snubber(2.2pF+4.2k)的波形

  由圖5可以看出,加上合適的Snubber電路后,VDS的上升率有所減緩,因而可以轉(zhuǎn)移開關(guān)管的關(guān)斷損耗至Snubber電路的RS。

  值得注意的是,由于實驗電源的功率很小,因而Snubber電路的電容數(shù)值很小以至作用不大。但如果用在大功率電路中,電容的數(shù)值會較大,因而效果將更為明顯。

  RCD Clamp電路參數(shù)選擇及相關(guān)波形圖

  經(jīng)計算得出:CC=815.87pF;RC=300.19k?實際中選取CC=1nF,Rc分別選取270k郊?00k劍⑶曳直鷦謨蠷CD Clamp及無RCD Clamp下對比兩者的實際效果。

  圖6為不加Clamp電路時開關(guān)管電壓波形VDS,其端電壓已超過600V;圖7為Clamp電路中選取RC=270k劍珻C=1nF,端電壓為474V。

電壓關(guān)斷型緩沖電路分析及設(shè)計方法

  圖6 無Clamp 時的波形

Clamp

  圖7 Clamp:270k+1nF的波形

  可見,采用Clamp電路并選取利用公式計算出的數(shù)值,可使開關(guān)管端電壓VDS有效地鉗位到合適的電壓水平,為實際所用。

  結(jié)語

  通過適當選取RCD Snubber 的電路參數(shù),可有效地改善開關(guān)管的開關(guān)軌跡,降低其關(guān)斷電壓的上升速率,可以轉(zhuǎn)移開關(guān)管的損耗至Snubber電路的電阻上,提高開關(guān)管的工作可靠性,同時改善電路的高頻電磁干擾,但Snubber電路基本上不會提高整機的工作效率。

  反激式變換器在開關(guān)管關(guān)斷時,存在很高的電壓尖峰,通過適當選取RCD Clamp的電路參數(shù),可以對開關(guān)管實現(xiàn)電壓鉗位,避免因過高的電壓尖峰使開關(guān)管受損。但是,因Clamp電路消耗了變壓器漏感上的能量,從而在一定程度上影響了整機的工作效率。

  參考文獻

  1 李愛文,張承慧. 現(xiàn)代逆變技術(shù)及其應(yīng)用. 北京. 科學出版社. 2002

電路相關(guān)文章:電路分析基礎(chǔ)


dc相關(guān)文章:dc是什么


電荷放大器相關(guān)文章:電荷放大器原理
電容傳感器相關(guān)文章:電容傳感器原理


評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉