新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 從設計到維修,全方位學習開關電源

從設計到維修,全方位學習開關電源

作者: 時間:2012-12-17 來源:網(wǎng)絡 收藏
存在一個不可忽視的問題,即電感的繞線將導致兩個分布參數(shù)(或寄生參數(shù)),一個是不可避免的繞線電阻,另一個是與繞制工藝、材料有關的分布式 雜散電容。雜散電容在低頻時影響不大,但隨頻率的提高而漸顯出來,當頻率高到某個值以上時,電感也許變成電容特性了。如果將雜散電容“集中”為一個電容, 則從電感的等效電路可以看出在某一頻率后所呈現(xiàn)的電容特性。

  當分析電感在線路中的工作狀況或者繪制電壓電流波形圖時,不妨考慮下面幾個特點:

  1. 當電感L中有電流I流過時,電感儲存的能量為:

  E=0.5×L×I2 (1)

  2. 在一個開關周期中,電感電流的變化(紋波電流峰峰值)與電感兩端電壓的關系為:

  V=(L×di)/dt (2)

  由此可看出,紋波電流的大小跟電感值有關。

  3. 就像電容有充、放電電流一樣,電感器也有充、放電電壓過程。電容上的電壓與電流的積分(安·秒)成正比,電感上的電流與電壓的積分(伏·秒)成正比。只要電感電壓變化,電流變化率di/dt也將變化;正向電壓使電流線性上升,反向電壓使電流線性下降。

  計算出正確的電感值對選用合適的電感和輸出電容以獲得最小的輸出電壓紋波而言非常重要。

  從圖1可以看出,流過電感器的電流由交流和直流兩種分量組成,因為交流分量具有較高的頻率,所以它會通過輸出電容流入地,產生相應的輸出紋波電壓dv=di×RESR。這個紋波電壓應盡可能低,以免影響電源系統(tǒng)的正常操作,一般要求峰峰值為10mV~500mV

  紋波電流的大小同樣會影響電感器和輸出電容的尺寸,紋波電流一般設定為最大輸出電流的10%~30%,因此對降壓型電源來說,流過電感的電流峰值比電源輸出電流大5%~15%。

  降壓型的電感選擇

  為降壓型選擇電感器時,需要確定最大輸入電壓、輸出電壓、電源開關頻率、最大紋波電流、占空比。下面以圖2為例說明降壓型開關電源電感值的計算,首先假設開關頻率為300kHz、輸入電壓范圍12V±10%、輸出電流為1A、最大紋波電流300mA。

  最大輸入電壓值為13.2V,對應的占空比為:

  D=Vo/Vi=5/13.2=0.379 (3)

  其中,Vo為輸出電壓、Vi為輸出電壓。當開關管導通時,電感器上的電壓為:

  V=Vi-Vo=8.2V (4)

  當開關管關斷時,電感器上的電壓為:

  V=-Vo-Vd=-5.3V (5)

  dt=D/F (6)

  把公式2/3/6代入公式2得出:

  從設計到維修,全方位學習開關電源

  升壓型開關電源的電感選擇

  對于升壓型開關電源的電感值計算,除了占空比與電感電壓的關系式有所改變外,其它過程跟降壓型開關電源的計算方式一樣。以圖3為例進行計算,假設開關頻率為 300kHz、輸入電壓范圍5V±10%、輸出電流為500mA、效率為80%,則最大紋波電流為450mA,對應的占空比為:

  D=1-Vi/Vo=1-5.5/12=0.542 (7)

  當開關管導通時,電感器上的電壓為:

  V=Vi=5.5V (8)

  當開關管關斷時,電感器上的電壓為:

  V=Vo+Vd-Vi=6.8V (9)

  把公式6/7/8代入公式2得出:

  從設計到維修,全方位學習開關電源

  請注意,升壓電源與降壓電源不同,前者的負載電流并不是一直由電感電流提供。當開關管導通時,電感電流經過開關管流入地,而負載電流由輸出電容提供,因此輸 出電容必須有足夠大的儲能容量來提供這一期間負載所需的電流。但在開關管關斷期間,流經電感的電流除了提供給負載,還給輸出電容充電。

  一般而言,電感值變大,輸出紋波會變小,但電源的動態(tài)響應也會相應變差,所以電感值的選取可以根據(jù)電路的具體應用要求來調整以達到最理想效果。開關頻率的提 高可以讓電感值變小,從而讓電感的物理尺寸變小,節(jié)省電路板空間,因此目前的開關電源有往高頻發(fā)展的趨勢,以適應電子產品的體積越來越小的要求。

  如何抑制開關電源紋波的產生 我們最終的目的是要把輸出紋波降低到可以忍受的程度,達到這個目的最根本的解決方法就是要盡量避免紋波的產生,首先要清楚開關電源紋波的種類和產生原因。

  隨著SWITCH的開關,電感L中的電流也是在輸出電流的有效值上下波動的。所以在輸出端也會出現(xiàn)一個與SWITCH同頻率的紋波,一般所說的紋波就是指這個。它與輸出電容的容量和ESR有關系。這個紋波的頻率與開關電源相同,為幾十到幾百KHz。

  另外,SWITCH一般選用雙極性晶體管或者MOSFET,不管是哪種,在其導通和截止的時候,都會有一個上升時間和下降時間。這時候在電路中就會出現(xiàn)一個與SWITCH上升下降時間的頻率相同或者奇數(shù)倍頻的噪聲,一般為幾十MHz。同樣二極管D在反向恢復瞬間,其等效電路為電阻電容和電感的串聯(lián),會引起諧振,產生的噪聲頻率也為幾十MHz。這兩種噪聲一般叫做高頻噪聲,幅值通常要比紋波大得多。

  如果是AC/DC變換器,除了上述兩種紋波(噪聲)以外,還有AC噪聲,頻率是輸入AC電源的頻率,為50~60Hz左右。還有一種共模噪聲,是由于很多開關電源的功率器件使用外殼作為散熱器,產生的等效電容導致的。因為本人是做汽車電子研發(fā)的,對于后兩種噪聲接觸較少,所以暫不考慮。

  開關電源的EMI設計經驗分享

  開關電源的EMI干擾源集中體現(xiàn)在功率開關管、整流二極管、高頻變壓器等,外部環(huán)境對開關電源的干擾主要來自電網(wǎng)的抖動、雷擊、外界輻射等。

  1.開關電源的EMI源

  開關電源的EMI干擾源集中體現(xiàn)在功率開關管、整流二極管、高頻變壓器等,外部環(huán)境對開關電源的干擾主要來自電網(wǎng)的抖動、雷擊、外界輻射等。

 ?。?)功率開關管

  功率開關管工作在On-Off快速循環(huán)轉換的狀態(tài),dv/dt和di/dt都在急劇變換,因此,功率開關管既是電場耦合的主要干擾源,也是磁場耦合的主要干擾源。

 ?。?)高頻變壓器

  高頻變壓器的EMI來源集中體現(xiàn)在漏感對應的di/dt快速循環(huán)變換,因此高頻變壓器是磁場耦合的重要干擾源。

 ?。?)整流二極管

  整流二極管的EMI來源集中體現(xiàn)在反向恢復特性上,反向恢復電流的斷續(xù)點會在電感(引線電感、雜散電感等)產生高 dv/dt,從而導致強電磁干擾。

 ?。?)PCB

  準確的說,PCB是上述干擾源的耦合通道,PCB的優(yōu)劣,直接對應著對上 述EMI源抑制的好壞。

  2.開關電源EMI傳輸通道分類

 ?。ㄒ唬?。 傳導干擾的傳輸通道

 ?。?)容性耦合

  (2)感性耦合

 ?。?)電阻耦合

  a.公共電源內阻產生的電阻傳導耦合

  b.公共地線阻抗產生的 電阻傳導耦合

  c.公共線路阻抗產生的電阻傳導耦合

  (二)。 輻射干擾的傳輸通道

 ?。?)在開關 電源中,能構成輻射干擾源的元器件和導線均可以被假設為天線,從而利用電偶極子和磁偶極子理論進行分析;二極管、電容、功率開關管可以假設為電偶極子,電 感線圈可以假設為磁偶極子;

 ?。?)沒有屏蔽體時,電偶極子、磁偶極子,產生的電磁波傳輸通道為空氣(可以假設為自由空間);

 ?。?)有屏蔽體時,考慮屏蔽體的縫隙和孔洞,按照泄漏場的數(shù)學模型進行分析處理。

  3.開關電源EMI抑制的9大措施

  在開關電源中,電壓和電流的突變,即高dv/dt和di/dt,是其EMI產生的主要原因。實現(xiàn)開關電源的EMC設計技術措施主要基于以下兩點:

 ?。?)盡量減小電源本身所產生的干擾源,利用抑制干擾的方法或產生干擾較小的元器件和電路,并進行合理布局;

  (2)通過接地、濾波、屏蔽 等技術抑制電源的EMI以及提高電源的EMS。

  分開來講,9大措施分別是:

  (1)減小dv/dt和di/dt(降 低其峰值、減緩其斜率)

  (2)壓敏電阻的合理應用,以降低浪涌電壓

 ?。?)阻尼網(wǎng)絡抑制過沖

 ?。?)采用軟恢復特 性的二極管,以降低高頻段EMI

 ?。?)有源功率因數(shù)校正,以及其他諧波校正技術

 ?。?)采用合理設計的電源線濾波器

 ?。?



關鍵詞: 維修 學習 開關電源

評論


相關推薦

技術專區(qū)

關閉