新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 串并聯諧振高壓脈沖電容充電電源的閉環(huán)控制

串并聯諧振高壓脈沖電容充電電源的閉環(huán)控制

作者: 時間:2012-08-09 來源:網絡 收藏
1 引言
電容能在很短時間內迅速釋放其儲存的能量,形成強大的沖擊電流和沖擊功率,因此廣泛應用在激光核聚變、X光機、粒子束武器等領域。脈沖電容器的能量存儲主要靠高壓直流充電電源來實現。
文獻利用LC串聯電路研制了一臺40 kW/10 kV數字化高頻電容充電電源,重點對提高功率密度和安全性能方面進行了研究,但未考慮分布電容。文獻基于移相LCC設計了電火花加工電源,克服了傳統電火花電源體積、重量大,效率低的問題,但電流連續(xù),開關損壞較大,未考慮功率輸出。
這里通過分析,研制了LC串聯諧振變換器的實際電路,針對限功率條件下充電電流減小,利用率低,充電速度慢等問題,采用策略對等效LCC諧振電路進行控制,提高了充電速度和電源利用率,效果良好。

2 3 kWLC串聯諧振電容充電電源
交流輸入整流后直流側電壓為200 V,電源輸出電壓7 kV,功率3 kW。由LC串聯諧振特性,根據恒流、峰值限定和輸出功率,計算選擇電路參數為:開關周期Ts=100μs,諧振電容C1=1μF,諧振電感L=60μH,諧振周期,若電流恒定,則Uo上升速率不變,故Uo波形斜率可反映充電電流變化。圖2中Uo波形斜率說明充電電流開始較大,0~4 kV階段,電壓變化率較小,充電電流變化較少,而在4~7 kV階段,電流隨著電壓升高迅速減小,說明實際電路不是恒流充電的LC串聯諧振電路,電路中高頻變壓器和整流硅堆存在分布電容,導致串聯諧振電路變?yōu)長CC諧振。
系統實際等效電路如圖3所示,其中,并聯諧振電容C2等效為變壓器和整流硅堆分布電容,L為諧振電感,C1為串聯諧振電容。

e.JPG


串并聯諧振電路中,負載電容Co通過整流橋及變壓器與C2并聯,當C2兩端電壓使整流硅堆導通時,Co連接到電路中,電路為L和C1串聯諧
振,諧振周期為T1。當C2兩端電壓小于等效負載電容電壓,整流硅堆不能導通時,Co與電路斷開,此時電路為L,C1和C2諧振,諧振周期為T2。隨著Co電壓的升高,Co連接到電路的時間減少,諧振周期逐漸減小,而LC串聯諧振周期不變。圖4示出2 kV,4 kV時iL與Uo波形,對比圖4a,b得,隨著Uo的升高,諧振周期變短,符合串并聯諧振特點,證明實際電路為串并聯諧振。

f.JPG


恒頻時充電電流逐漸減小,輸出功率呈波峰狀,輸出功率最大為1.5 kW,遠小于設計的3 kW。在充電開始后一段時間即達到最大值,然后輸出功率逐漸減小。
根據上述分析得出該電路存在的問題:①實際電路為LCC串并聯諧振,隨著Uo升高,充電電流減小,越到后期充電速度越慢;②由于充電電流減小,造成輸出功率降低,達不到設計目標。
針對以上問題,采用充電電流策略可使充電電流維持恒定,實現理想LC諧振恒流充電。但從輸出功率角度分析,電流閉環(huán)恒流充電輸出功率曲線與電壓相同,充電末期輸出功率最大,在限制輸入電源功率的場合,僅能按照最大功率值設計電源,而該電源只有在最后階段才達到最大功率輸出,電源利用率低,電源體積重量也較大。單純的電流閉環(huán)并不是最佳的控制策略。根據實際LCC串并聯諧振功率輸出波峰狀曲線,考慮使LCC達到較大功率后實現恒功率輸出(例如按1.2kW),不僅可以相對恒頻控制提高充電速度,還能減小電源的功率等級,從而減小體積重量,適合限功率、小型化場合。

4 閉環(huán)控制策略及軟件實現
根據上述分析,在實際LCC串并聯諧振電路中加入閉環(huán)控制策略,控制思想為:①充電開始階段,采用電流閉環(huán),使充電電流不變,為恒流控制;②根據功率變化曲線加入功率閉環(huán),在電源充電達到設定功率后改變充電電流,維持該功率輸出恒定,直到臨近設定充電電壓(95%),此階段為恒功率控制:③在充電電源臨近設定充電電壓時(95%),為提高充電精度,采取降低開關頻率,小電流充電,甚至可在達到充電電壓時,根據系統泄漏電流保持電容電壓恒定。
系統實現閉環(huán)控制時,需要反饋量,此系統需要充電電流、輸出功率和Uo。為簡化,系統僅采集檢測Uo,充電電流值根據Uo變化率計算得到,輸出功率通過Uo和充電電流相乘得到。
控制系統中,PI控制器因其控制簡單迅速,能克服余差,有良好的控制


上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉