新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 求解每個熱源功率損耗的新方法

求解每個熱源功率損耗的新方法

作者: 時間:2011-08-12 來源:網(wǎng)絡(luò) 收藏

  一 引言

  DC-DC轉(zhuǎn)換器的效率和功率是許多電子系統(tǒng)的一個重要特征參數(shù)。可以測量出這些特征參數(shù),并用下面的直觀方式進行表達:

  效率 = 輸出功率 / 輸入功率 (1)

  功率 = 輸入功率-輸出功率 (2)

  但是對于每個元器件做為一個單獨熱源在中所占的比重,這樣的結(jié)果沒有提供任何信息。而我們的方法學能讓設(shè)計者更好地選擇針對其應(yīng)用的最佳DC-DC實現(xiàn)方案。

  二 降壓轉(zhuǎn)換器的實例

  降壓轉(zhuǎn)換器中的主要熱源是高邊、低邊和電感器。如果我們使用電工學方法來判定高邊的功率損耗,那么就必須測量漏極電流、漏源電壓、柵極電流和柵源電壓。不幸的是,如果不在電流路徑中引入額外的電感和干擾電路的正常工作,要在高頻DC-DC轉(zhuǎn)換器中測得這些數(shù)據(jù)是非常困難的。但借助熱成像攝像機,我們研究出一種求解每個損耗的新方法,而且不會影響電路的工作。

  三 新方法的基本原理

  在一個電路中,將電能轉(zhuǎn)換為熱能的元器件是熱源。能量轉(zhuǎn)換成熱會增加熱源器件的和周圍環(huán)境的溫度。轉(zhuǎn)變成熱的能量就是元器件的功率損耗。整個溫升(?T)取決于功率損耗(P)和環(huán)境。對于一個在固定測試臺上的某塊PCB板,?T是功率損耗的唯一函數(shù)。因此,如果我們測量出?T,就可以推導計算每個損耗的方法。

  四 基本原理的推導

  為簡單起見,假設(shè)在PCB板上有兩個熱源(HS1和HS2)。HS1工作時不但使其自身的表面溫度會升高,也會提高HS2的表面溫度,對HS2來說也是如此。因此,每個熱源的最終?T可以用下面的等式來表示。

  求解每個熱源功率損耗的新方法

  Sij (i, j = 1,2)是熱敏感度系數(shù),與熱阻的度數(shù)相同

  Pi是每個熱源的功率損耗

  等式(3)也可以擴展到N個熱源的情況。在這種情況下,每個熱源的溫升可以由下式給出。

  求解每個熱源功率損耗的新方法

  S是一個N x N的矩陣

  如果我們知道S的數(shù)值,就可以由下式得到每個熱源的功率損耗。

  求解每個熱源功率損耗的新方法

  假設(shè)Sij與溫度或電路的工作狀態(tài)無關(guān),那么就可以由等式6確定每個Sij。

  求解每個熱源功率損耗的新方法

  這里,DTi是第i個熱源的溫升,Pj是第j個熱源消耗的功率。所有其他器件都不起作用。

  每次我們都使用簡單的直流技術(shù)給一個熱源供電,這樣就可以以非侵入式方式測量熱敏感度的系數(shù)。我們對被測器件(IC,MOSFET和電感器)施加直流電壓和電流,迫使器件開始消耗能量,然后測出Pj。然后我們使用熱成像攝像機測量表面溫度的?Ti,接著就可以用上面的等式(6)計算出Sij。

  我們使用了新的方法學計算兩個降壓拓撲的主熱源:一個使用SiC739D8 DrMOS IC的集成式功率級,和一個使用兩個MOSFET的分立式功率級,在分立式功率級中,Si7382DP在高邊,Si7192DP在低邊。

  一 引言

  DC-DC轉(zhuǎn)換器的效率和功率損耗是許多電子系統(tǒng)的一個重要特征參數(shù)。可以測量出這些特征參數(shù),并用下面的直觀方式進行表達:

  效率 = 輸出功率 / 輸入功率 (1)

  功率損耗 = 輸入功率-輸出功率 (2)

  但是對于每個元器件做為一個單獨熱源在損耗中所占的比重,這樣的結(jié)果沒有提供任何信息。而我們的方法學能讓設(shè)計者更好地選擇針對其應(yīng)用的最佳DC-DC實現(xiàn)方案。

  二 降壓轉(zhuǎn)換器的實例

  降壓轉(zhuǎn)換器中的主要熱源是高邊MOSFET、低邊MOSFET和電感器。如果我們使用電工學方法來判定高邊MOSFET的功率損耗,那么就必須測量漏極電流、漏源電壓、柵極電流和柵源電壓。不幸的是,如果不在電流路徑中引入額外的電感和干擾電路的正常工作,要在高頻DC-DC轉(zhuǎn)換器中測得這些數(shù)據(jù)是非常困難的。但借助熱成像攝像機,我們研究出一種求解每個損耗的新方法,而且不會影響電路的工作。

  三 新方法的基本原理

  在一個電路中,將電能轉(zhuǎn)換為熱能的元器件是熱源。能量轉(zhuǎn)換成熱會增加熱源器件的和周圍環(huán)境的溫度。轉(zhuǎn)變成熱的能量就是元器件的功率損耗。整個溫升(?T)取決于功率損耗(P)和環(huán)境。對于一個在固定測試臺上的某塊PCB板,?T是功率損耗的唯一函數(shù)。因此,如果我們測量出?T,就可以推導計算每個熱源功率損耗的方法。

  四 基本原理的推導

  為簡單起見,假設(shè)在PCB板上有兩個熱源(HS1和HS2)。HS1工作時不但使其自身的表面溫度會升高,也會提高HS2的表面溫度,對HS2來說也是如此。因此,每個熱源的最終?T可以用下面的等式來表示。

  求解每個熱源功率損耗的新方法

  Sij (i, j = 1,2)是熱敏感度系數(shù),與熱阻的度數(shù)相同

  Pi是每個熱源的功率損耗

  等式(3)也可以擴展到N個熱源的情況。在這種情況下,每個熱源的溫升可以由下式給出。

  求解每個熱源功率損耗的新方法

  S是一個N x N的矩陣

  如果我們知道S的數(shù)值,就可以由下式得到每個熱源的功率損耗。

  求解每個熱源功率損耗的新方法

  假設(shè)Sij與溫度或電路的工作狀態(tài)無關(guān),那么就可以由等式6確定每個Sij。

  求解每個熱源功率損耗的新方法

  這里,DTi是第i個熱源的溫升,Pj是第j個熱源消耗的功率。所有其他器件都不起作用。

  每次我們都使用簡單的直流技術(shù)給一個熱源供電,這樣就可以以非侵入式方式測量熱敏感度的系數(shù)。我們對被測器件(IC,MOSFET和電感器)施加直流電壓和電流,迫使器件開始消耗能量,然后測出Pj。然后我們使用熱成像攝像機測量表面溫度的?Ti,接著就可以用上面的等式(6)計算出Sij。

  我們使用了新的方法學計算兩個降壓拓撲的主熱源:一個使用SiC739D8 DrMOS IC的集成式功率級,和一個使用兩個MOSFET的分立式功率級,在分立式功率級中,Si7382DP在高邊,Si7192DP在低邊。

  A.集成式降壓轉(zhuǎn)換器

  求解每個熱源功率損耗的新方法

  圖1

  圖1顯示了用于集成式降壓轉(zhuǎn)換器的EVB前端。這里有4個熱源:電感器(HS1),驅(qū)動IC(HS2),高邊MOSFET(HS3)和低邊MOSFET(HS4)。SiC739 DrMOS是一個單芯片解決方案,其內(nèi)部包含的HS2、HS3和HS4靠得非常近。由于這里有4個熱源,因此S是一個4x4矩陣。

  求解每個熱源功率損耗的新方法

  圖2顯示了當?shù)瓦匨OSFET的體二極管是前向偏置時(AR0x Avg. =》 HSx),4個熱源的溫度。

  如果 TA 為 23.3 ?C,那么,

  求解每個熱源功率損耗的新方法(8)

  測得的電流I4和電壓V4分別是2.14A和0.6589V。

  P4 = I4?V4 = 1.41W (8)

  使


上一頁 1 2 下一頁

關(guān)鍵詞: 熱源功率 損耗 MOSFET

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉