設計EMC兼容的汽車開關穩(wěn)壓器
伴隨這些先進設備而來的,是對更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項是達到電磁兼容性測試(EMC)的嚴格標準。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉(zhuǎn)換為調(diào)節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時宜。更準確地說,線性穩(wěn)壓器使得輸出電壓降低而導致負載電流增加。開關穩(wěn)壓器則愈來愈受到廣泛使用,隨之而來的是對于電磁波干擾(EMI)無線射頻的憂慮,以及對于安全性系統(tǒng)的重視。
本文將以沒有復雜數(shù)學運算的直覺方式,探討成功實現(xiàn)開關穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設計、元件選用、配置、噪聲擴散及屏蔽。
用簡單方法實現(xiàn)開關電源EMC
本文的目的在于不需要完全了解復雜的EMI,即可嘗試設計EMI兼容的開關穩(wěn)壓器。事實上,與EMI有關的所有問題都來源于未完全達到開關穩(wěn)壓器內(nèi)電壓與電流變化的速率,以及與電路板信號線上或元件內(nèi)寄生電路元件的互動方式。以通過額定14V且以5A產(chǎn)生5V電壓的汽車電池產(chǎn)生動力的200kHz降壓型開關穩(wěn)壓器為例,若要達到可觀的效率,開關節(jié)點的電壓斜率應該只占導通時間的一小段,例如1/12以下。連續(xù)導電模式(CCM)下運作的降壓轉(zhuǎn)換器導通時間為D/fsw,其中D是負載周期或脈寬調(diào)制(PWM)信號開啟時間百分比與整段時間的比值(ton及toff),而fsw是轉(zhuǎn)換器的開關頻率。
對于CCM中運作的降壓轉(zhuǎn)換器,電感電流一直是非零的正電流。在這種情況下,負載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開關頻率時,我們很快計算出導通時間為1.8μs。為支持此頻率,控制開關的上升/下降時間必須小于90納秒。這使得我們注意到第一個減少噪聲的方法,也就是斜率控制。您可能還無法理解,但是此時我們非常了解與PWM切換節(jié)點有關的諧波,也就是開關穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內(nèi)容表示,這表明了EMI背后的驅(qū)動因素。這一傅里葉包絡定義了可通過傅里葉分析或計算梯形波形導通時間及上升時間取得的諧波振幅。
觀察頻域時,可看出相等上升和下降時間的梯形波形是由不同的諧波信號所組成,這些信號存在于周期信號基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會在1/(π×τ)的第一個轉(zhuǎn)折點(導通時間)減至20dB/dec,并且在1/(π×tr)的第二個轉(zhuǎn)折點減至40dB/dec。因此,限制開關節(jié)點波形的斜率會對減少發(fā)射量具有重大影響。通過這項探討,應該能夠清楚顯示降低運作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個難點與AM頻段有關。該頻段從500kHz開始,一直持續(xù)到2MHz,對于開關穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設沒有任何電路板諧振),因此可在AM頻段上下運作。
負載周期重要嗎?
另一項重要因素是,如果負載周期剛好是50%,復雜梯形切換波形的所有能量會以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負載周期運作是最壞的情況。在50%上下的負載周期,即使出現(xiàn)諧波,也會發(fā)生自然的EMI擴散。
EMI及EMC標準
您可以將EMI視為不適宜的能量,而這個能量不需要太多就有可能違反發(fā)射標準。事實上,EMI是相當?shù)偷哪芰啃?。例如,?MHz的狀況下,只要20nW的EMI便會違反FCC對于傳導發(fā)射的規(guī)范。傳導發(fā)射是以頻譜分析儀監(jiān)測輸入來源高頻率元件而測得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開關穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開關穩(wěn)壓器的輸入是下一個需要注意之處。
評論