基于DSP的全數(shù)字永磁電機推進系統(tǒng)
永磁推進電機因其體積小、重量輕、效率高、轉(zhuǎn)矩密度大等優(yōu)點,已經(jīng)開始替代傳統(tǒng)直流推進電機,成為現(xiàn)代艦船電力推進系統(tǒng)中的常見動力裝置之一國外對大功率交流推進電機的驅(qū)動控制研究多集中在異步電機方面,而國內(nèi)目前還處于吸收引進階段就驅(qū)動方式而言,文采用交-交循環(huán)變流器方式,具有低速性能好、起動轉(zhuǎn)矩大的優(yōu)點,但控制復雜,功率因數(shù)低,高次諧波消除較為困難;文采用交-直-交PWM方式,其主電路簡單,功率因數(shù)接近l,能夠有效抑制和削弱諧波就控制方法而言,文對比了矢量控制和直接轉(zhuǎn)矩控制,指出前者著眼于磁鏈與轉(zhuǎn)矩的解耦,電流、轉(zhuǎn)矩控制性能良好,調(diào)速范圍寬,后者動態(tài)響應快,但低速時轉(zhuǎn)矩脈動大,缺乏對電機電流的有效控制
本文根據(jù)矢量控制理論和SVPWM原理,采用交-直-交PWM驅(qū)動方式,以TMS320LF2407ADSP為核心,給出了永磁同步電機推進系統(tǒng)的硬件結構和軟件流程在此基礎上,對該套方案進行了Matlab/Simulink仿真和低速運行實驗
1 永磁同步電動機的矢量控制策略
矢量控制理論是由F.Blaschke于1971年提出的,其基本原理是:在轉(zhuǎn)子磁鏈dqO旋轉(zhuǎn)坐標系中,將定子電流分解為相互正交的兩個分量id和iq其中id與磁鏈同方向,代表定子電流勵磁分量,iq與磁鏈方向正交,代表定子電流轉(zhuǎn)矩分量,用這兩個電流分量所產(chǎn)生的電樞反應磁場來等效代替原來定子三相繞組電流ia、ib、ic所產(chǎn)生的電樞反應磁場,即進行Park變換:
式中:γ為轉(zhuǎn)子位置角,即轉(zhuǎn)子d軸領先定子a相繞組中心線的電角度
然后分別對id和io進行獨立控制,即可獲得像直流電機一樣良好的動態(tài)特性
表面凸出式轉(zhuǎn)子結構的永磁同步電機d、q軸電感基本相同,因而其電磁轉(zhuǎn)矩方程為
式中:pn為轉(zhuǎn)子極對數(shù),Ψf為永磁體產(chǎn)生基波磁鏈的有效值
為使定子單位電流產(chǎn)生最大轉(zhuǎn)矩,提高電機的工作效率,本文選用最大轉(zhuǎn)矩/電流矢量控制,由式(2)可知,對于表面凸出式轉(zhuǎn)子結構的永磁同步電機,可令id=0,通過調(diào)節(jié)iq來實現(xiàn)轉(zhuǎn)矩的控制如圖1所示,整個伺服系統(tǒng)由3個控制環(huán)構成
1)位置環(huán):采集電機旋轉(zhuǎn)編碼器輸出的脈沖信號,鑒相、倍頻后進行計算,提供坐標變換所需的轉(zhuǎn)子位置信息;
2)速度環(huán):比較實際轉(zhuǎn)速n與設定轉(zhuǎn)速nref所得差值經(jīng)PI調(diào)節(jié)后作為q軸電流參考值iqr再經(jīng)電流環(huán)調(diào)節(jié)后,反過來控制電機轉(zhuǎn)速;
3)電流環(huán):比較電流實際值id、iq與參考值idr、iqr,經(jīng)PI調(diào)節(jié)后產(chǎn)生d、g軸電壓參考值udr、uqr,將其轉(zhuǎn)換至靜止坐標系中得uαr、uβr按SVPWM方式生成逆變器觸發(fā)信號,驅(qū)動電機
2 系統(tǒng)硬件結構
永磁同步電動機推進系統(tǒng)的硬件結構如圖2所示,它主要提供以下3大功能:電動機控制策略的實現(xiàn)、控制量的檢測采樣以及功率驅(qū)動
2.1 TMS320LF2407A DSP
整個系統(tǒng)控制策略的實現(xiàn)由核心硬件TMS320LF2407A DSP完成,它是TI公司專為電機控制而設計的定點芯片,具有低功耗和高速度的特點,其單指令周期最短可達25 ns片內(nèi)兩個事件管理器(EVA和EVB)各有2個通用定時器,6個帶可編程死區(qū)功能的PWM輸出通道,1個外部硬件中斷引腳,3個捕獲單元(CAP)和1個正交編碼單元(QEP)這些功能與串行外設接口(SPI)等模塊一起,極大地方便了電機控制過程中的數(shù)據(jù)處理、策略執(zhí)行和決策輸出等
2.2 控制量檢測部分
電機機械量的采集由增量式光電編碼器來完成,其輸出包括兩組脈沖信號:A、B、Z和U、V、W,它們與DSP的連接如圖2所示其中A、B信號正交,頻率為電機機械轉(zhuǎn)速頻率的2 500倍,正交編碼單元將它們四倍頻后送入相應的計數(shù)器進行計數(shù),計數(shù)方向由A、B信號的相位先后決定Z信號隨轉(zhuǎn)子每轉(zhuǎn)一周輸出一個脈沖,用以檢測電機轉(zhuǎn)速U、V、W信號與電機三相反電勢同頻率、同相位,根據(jù)它們的不同狀態(tài),可將360°電角度平面分成6個部分,用以確定電機的初始轉(zhuǎn)子位置角
電機電流狀態(tài)量的采集由霍爾電流傳感器完成,其采樣電路如圖3所示,輸入輸出關系為
為了保證電流較小時的采樣精度,改善電機低速、輕載下的運行情況,本系統(tǒng)采用12 b雙A/D轉(zhuǎn)換器ADS7862來代替DSP內(nèi)部10 b的模/數(shù)轉(zhuǎn)換模塊,通過DSP的外部存儲器擴展接口,將式(3)的模擬電流量轉(zhuǎn)換為數(shù)字量結果,輸入 DSP
2.3 功率驅(qū)動部分
永磁同步電機的功率驅(qū)動為交-直-交PWM方式,其中整流部分采用單相橋式不控整流,逆變部分采用智能功率模塊(Intelligent Power Module,IPM)PS21869,它內(nèi)部集成了6個絕緣柵雙極型晶體管(Insulated Gate Bipolar Transistor,IGBT)及其驅(qū)動、保護電路,由DSP的PWMl~6引腳提供觸發(fā)信號,能夠在過流或欠壓故障發(fā)生時,關閉IGBT驅(qū)動電路,使模塊停止工作,同時在相應故障引腳輸出故障信號至DSP的PDPINTA引腳,通過硬件中斷,封鎖PWM脈沖輸出
3 系統(tǒng)軟件設計
永磁電機推進系統(tǒng)的軟件主要由3部分組成:初始化程序、主程序和中斷服務子程序系統(tǒng)復位時,首先執(zhí)行初始化程序,檢測、設定DSP內(nèi)部各模塊的工作模式和初始狀態(tài)主程序負責收集電機電流、轉(zhuǎn)速、轉(zhuǎn)子位置等一系列實時運行信息,在滿足條件時設置系統(tǒng)標志位,執(zhí)行相應中斷服務子程序其中,外部保護中斷子程序由PDPINTA引腳觸發(fā),用于在故障發(fā)生時切斷DSP的PWM及定時器輸出;而定時中斷子程序則是實現(xiàn)電機矢量控制策略的核心程序,主要完成PI調(diào)節(jié)和SVPWM波形發(fā)生這兩大功能,其流程圖如圖4所示
3.1 數(shù)字PI調(diào)節(jié)器
模擬PI調(diào)節(jié)器的控制規(guī)律為
其中:e(t)為參考值與實際值之差,作為PI調(diào)節(jié)器的輸入;u(t)為輸出和被控對象的輸入;uo為PI調(diào)節(jié)器的初值;Kp為比例系數(shù);TI為積分常數(shù)
將式(4)離散化,即可得到數(shù)字PI調(diào)節(jié)器的數(shù)學表達式:
式中:k為采樣序號,T為PWM采樣周期,KI=Kp/TI,為積分系數(shù)
由于電機轉(zhuǎn)軸和負載軸轉(zhuǎn)動慣量的存在,速度PI調(diào)節(jié)器的時間常數(shù)較大,調(diào)速時系統(tǒng)響應較慢而電流PI調(diào)節(jié)器則因為電時間常數(shù)較小,在電機起動和大范圍加減速時能夠快速進行電流調(diào)節(jié)和限幅,增強了系統(tǒng)抗電源和負載擾動的能力
3.2 SVPWM波形發(fā)生
SVPWM是一種從磁通角度出發(fā)的PWM方式,其基本原理及扇區(qū)劃分見文利用EVA的全比較單元,可直接在PWMl~6引腳上輸出五段式SVPWM波形,它在每個PWM周期中,能夠保證一相的開關狀態(tài)不變,有利于開關損耗的減小其主要步驟如下:
1)將比較控制寄存器(COMCONA)第12位置l,使SVPWM發(fā)生功能有效;
2)設置比較方式控制寄存器(ACTRA),令SVPWM輸出矢量正向旋轉(zhuǎn),使PWMl、3、5引腳高有效,PWM2、4、6引腳低有效;
3)設置定時器TI計數(shù)方式為“連續(xù)增/減”,相應周期寄存器TIPR的初始值為PWM采樣周期的一半,即Tc/2;
4)計算輸出空間電壓矢量Uout在兩相靜止坐標系中的分量uα、iβ;
5)確定組成Uout所在扇區(qū)的兩個非零空間矢量Ur、Ux+60按其值裝配ACTRA;
6)根據(jù)表1計算Ux、Ux+60的作用時間t1、t2,將t1裝入比較寄存器CMPRlt1+t2裝入CMPR2,啟動定時器操作
當TI值與CMPRl或CMPR2值發(fā)生匹配時,PWM輸出就會產(chǎn)生跳變通過及時更新每個采樣周期中CMPRl、CMPR2的值,就可以形成一系列不等寬的脈沖,使輸出電壓矢量的磁鏈軌跡為圓形,達到SVPWM的目的此外,為避免IPM同一橋臂上下兩只IGBT的直通,程序通過死區(qū)控制寄存器對PWMl~6引腳設置死區(qū)時間;同時濾除PWM序列中的過窄脈沖,以減小器件的開關損耗
4 仿真與實驗結果
本文利用Matlab/Simulink工具箱,根據(jù)圖1搭建系統(tǒng)模型,對一臺3對極永磁同步電機進行了矢量控制策略的仿真,所得仿真波形如圖5所示
從仿真結果可以看出,本矢量控制系統(tǒng)響應快速,轉(zhuǎn)矩脈動小,動態(tài)性能良好;id能夠較好地跟隨參考值0,從而保證了單位電流下最大轉(zhuǎn)矩的輸出,有利于推進電機效率的提高
實際實驗中,TMS320LF2407A時鐘頻率為30 MHz,SVPWM采樣頻率為3 kHz,死區(qū)時間設為8 μs,并濾除正負脈寬小于6%脈沖周期的過窄脈沖當轉(zhuǎn)速為300 r/min時,可得永磁電機推進系統(tǒng)輸出電壓、電流波形及其頻譜如圖6、圖7所示
由圖7a可以看出,SVPWM方式生成的電壓基波幅值較大,諧波分布比較分散,但其低次諧波主要為三次諧波;由圖7b可以看出,三相電機的電路結構對三次諧波成分有自然抑制作用,高次諧波則通過電機繞組電感的濾波作用得到削弱和消除,從而大大減小了諧波電流
5 結 論
仿真和實驗結果表明,采用交-直-交PWM驅(qū)動和最大轉(zhuǎn)矩/電流矢量控制的全數(shù)字永磁同步電動機推進系統(tǒng),電壓利用率較高,轉(zhuǎn)矩脈動小,能夠較好地抑制了電機電流中的諧波,低速性能優(yōu)于直接轉(zhuǎn)矩控制,可以滿足推進電動機低轉(zhuǎn)速、大轉(zhuǎn)矩、輕噪聲的要求,為現(xiàn)代艦船電力推進系統(tǒng)數(shù)字化操控的實現(xiàn)提供了一定參考
pwm相關文章:pwm是什么
霍爾傳感器相關文章:霍爾傳感器工作原理
單相異步電動機相關文章:單相異步電動機原理
霍爾傳感器相關文章:霍爾傳感器原理 脈沖點火器相關文章:脈沖點火器原理 脈寬調(diào)制相關文章:脈寬調(diào)制原理 矢量控制相關文章:矢量控制原理 三相異步電動機相關文章:三相異步電動機原理
評論