關(guān) 閉

新聞中心

EEPW首頁 > 工控自動化 > 設(shè)計應(yīng)用 > 基于自適應(yīng)技術(shù)的動態(tài)CPU供電單元

基于自適應(yīng)技術(shù)的動態(tài)CPU供電單元

作者: 時間:2006-12-06 來源:網(wǎng)絡(luò) 收藏
CPU核心Vcore波動會影響CPU正常工作,Vcore過高,將導(dǎo)致CPU發(fā)熱量上升、壽命縮短甚至燒毀;反之,Vcore過低則可能引起數(shù)據(jù)損壞、死機、藍(lán)屏等故障。由于CPU集成度越來越高,制作工藝越來越精細(xì),CPU越來越大,因此對供電系統(tǒng)提出了更高的要求。

  一、自適應(yīng)調(diào)節(jié)系統(tǒng)的結(jié)構(gòu)

早期普遍采用跳線或DIP開關(guān)來設(shè)定CPU,在安裝或更換CPU時,需要根據(jù)CPU核心電壓對照說明書,在上插拔挑線或撥動DIP開關(guān)進行設(shè)置,稍有不慎就可能燒毀CPU和主板,十分危險。為了解決這個問題,Intel公司從Pentium Ⅱ開始采用VID(Voltage Identification,電壓識別)技術(shù),VID技術(shù)是一種自適應(yīng)電壓調(diào)節(jié)技術(shù),采用這種技術(shù)后,主板供電電路可按CPU需要自動設(shè)置供電電壓,不再需要進行人工干預(yù)了。

自適應(yīng)電壓調(diào)節(jié)技術(shù)的核心是在CPU上增加了若干個VID,這些輸出的編碼信號控制Vcore供電電路中的PWM(Pulse Width Modulation,脈寬調(diào)制)控制器。開機后CPU將VID信號發(fā)送給PWM控制器,調(diào)整PWM控制器輸出脈沖信號的占空比,迫使DC/DC電路輸出的直流電壓與CPU的額定電壓相一致(圖1)。采用VID編碼后,VID的可編程特性使得用戶可以在BIOS中修改Vcore,一些主板制造商還編制了專門的工具軟件來顯示和修改Vcore值,給用戶帶來很大方便。

       圖1 自動設(shè)定原理

自適應(yīng)CPU供電電路的信號流程如圖2,電腦的主電源工作后,VttVR調(diào)壓器開始工作,它一方面為CPU中的VID控制器提供電源,一方面輸出VID_PWRGD信號。VID_PWRGD信號同時送往CPU中的VID控制器和Vcc調(diào)壓器中的PWM控制芯片的對應(yīng),分別作為VID控制器和PWM芯片的輸出允許信號。VID控制器接收到VID_PWRGD信號這個信號后立即通過若干條信號線同時輸出各位VID信號。在VCC調(diào)壓器內(nèi),PWM控制器接收到VID信號后,向場效應(yīng)管驅(qū)動器輸出脈沖信號,啟動DC/DC轉(zhuǎn)換功能,輸出Vcc電壓。待電壓穩(wěn)定后,PWM芯片向CPU提供VCC_PWRGD信號,讓CPU開始工作,如圖3。

   圖2 供電系統(tǒng)原理框圖

    圖3 自適應(yīng)電路時序圖

  二、VID與Vcore的關(guān)系

如前所述,CPU供給PWM控制器VID信號,由PWM控制器控制DC/DC降壓電路,實現(xiàn)對輸出電壓的調(diào)整。實際上,PWM控制器輸出的脈沖信號的頻率(或周期t)通常維持不變,改變的只是脈沖的占空比t1/t的大小,如圖4。由于t不變,t1增大則輸出電壓高,t1減小則輸出電壓降低,t1不變則輸出電壓不變。電壓數(shù)值最終由MOSFET導(dǎo)通的時間所決定,輸出電壓V的大小與MOSFET的導(dǎo)通時間t1成正比。

  圖4 PWM原理

在實際電路中,PWM采用移相式控制方式輸出脈沖信號,控制MOSFET的導(dǎo)通和關(guān)斷。DC/DC電路輸出脈動直流電,其紋波分量很大,須經(jīng)電容濾波后輸出平滑的直流電。當(dāng)濾波電容的容量足夠大時,實際輸出的波形近似為一條直線。

在自適應(yīng)供電系統(tǒng)中,t1是由CPU提供的VID編碼控制的。CPU的每個VID引腳有高電平和低電平兩種狀態(tài),分別代表“1”和“0”。“1”和“0”的不同組合構(gòu)成了VID編碼與輸出電壓之間的關(guān)系,見表1。由于VID編碼是不連續(xù)的,因此DC/DC轉(zhuǎn)換器實際上是一種階梯式降壓器(Step Down Regulator,簡稱SDR)。

Intel為其各款處理器產(chǎn)品制定了相應(yīng)的電壓調(diào)節(jié)模塊(Voltage Regulation Model,VRM)設(shè)計規(guī)范,從Prescott核心微處理器開始,電壓調(diào)節(jié)規(guī)范改用VRD(Voltage Regulation Down)來命名,各版本供電設(shè)計規(guī)范中VID位數(shù)、電壓調(diào)節(jié)精度和電壓調(diào)節(jié)范圍都各不相同,見表2。


VRD10.0將VID編碼從5位升級到6位,使得電壓調(diào)節(jié)精度從25mV提升到12.5mV,同時VRD10.0還提出了對VID進行動態(tài)調(diào)整的要求。

  三、 動態(tài)電壓調(diào)節(jié)技術(shù)

摩爾定律在芯片規(guī)模和性能方面的定義無比精確,但它卻忽視了芯片帶來的制約:性能與幾乎是同步提升,到2005年內(nèi)微處理器的最高功耗可能要攀升至150W,但目前采用的風(fēng)冷或水冷散熱技術(shù)所依托的熱傳導(dǎo)方式,都不可能將核心內(nèi)部的熱量迅速帶走,導(dǎo)致核心溫度過高,從而引發(fā)藍(lán)屏和死機故障。

動態(tài)電壓調(diào)節(jié)(Dynamic Voltage adjusting,DVA)技術(shù)正是在這種背景下提出來的,其基本思想是根據(jù)CPU核心功率變化適時調(diào)節(jié)供電電壓值,最大限度地減少微處理器的發(fā)熱量。譬如,Prescott處理器的功率達(dá)到100W之多,這個功率是指CPU占用率100%時的情況,功耗大小隨CPU的忙碌程度的變化而變化,在系統(tǒng)空閑時CPU實際負(fù)荷要小很多。如果CPU輸出的VID維持不變,Vcore將超過CPU的實際需求,從而帶來不必要的電能浪費。

另一方面,當(dāng)CPU處于十分忙碌的狀態(tài)時,CPU和供電電路自身內(nèi)阻的電壓降會隨電流增加而增加,如果CPU輸出的VID維持不變,Vcore的實際數(shù)值將隨電流的增加而降低,電壓的降低勢必降低CPU的穩(wěn)定性,這是毋庸置疑的。

動態(tài)自適應(yīng)電壓調(diào)節(jié)技術(shù)是一種智能供電技術(shù),與傳統(tǒng)的供電技術(shù)相比,動態(tài)VID的優(yōu)勢體現(xiàn)在以下三個方面:

 ?。?)  向CPU核心(die)提供穩(wěn)定的電壓,

提高了CPU工作穩(wěn)定性;

 ?。?)  根據(jù)CPU工作情況,動態(tài)地將供電電壓調(diào)節(jié)到某一時刻所需的最低水平,使供電電壓“恰好滿足需求”,實現(xiàn)最大限度的節(jié)能。

 ?。?)  如果出現(xiàn)電流猛增的意外情況,VID控制器可以限制電流增加,保護CPU免于因發(fā)熱過多而燒毀。

為了配合CPU內(nèi)VID控制器實現(xiàn)CPU核心電壓的動態(tài)調(diào)節(jié),Intel提出了柔性主板(Flexible Main Board,FMB)概念,并相繼推出了FMB 1.X和FMB2.X設(shè)計規(guī)范。為了能夠向CPU提供足夠的電力,降壓電路必須擁有功率足夠的MOSFET器件,同時在電流超標(biāo)時能及時采取措施讓電流降下來,防止產(chǎn)生過多的熱量摧毀CPU和主板。

  四、動態(tài)電壓調(diào)節(jié)的實現(xiàn)

關(guān)于動態(tài)電壓調(diào)整的策略,Intel在VRD10.0設(shè)計指南中說得很明白:供電系統(tǒng)需要提供對動態(tài)VID技術(shù)的支持,使得CPU中VID控制器通過VID總線每隔5ms對VID進行一次調(diào)整,步長(steps)為12.5mV,直到某一VID能夠滿足要求為止。那么,調(diào)整的根據(jù)是什么呢?

  為了描述電壓調(diào)整的過程,首先定義下面3個負(fù)載曲線:

  電壓最大值Vmax= VID – (RLL* ICC)

  電壓典型值Vtype = VID – TOB – (RLL* ICC)

  電壓最小值Vmin = VID – 2*TOB – (RLL* ICC)

式中RLL是傳輸線路等效電阻,這里是指電壓調(diào)整電路經(jīng)CPU插座(Socket)到CPU引腳之間的阻抗,包括導(dǎo)線電阻和CPU引腳與插座間的接觸電阻。由于RLL的存在,使得在主板輸出電壓與實際提供給CPU核心電壓之間存在一個落差。電壓跌落隨ICC的增加而線性增加,因此RLL是負(fù)載線的斜率。TOB是由制造誤差和溫度漂移等因素形成的誤差。

CPU中VID控制器采用“查表式”調(diào)節(jié)方式,圖5描述了處理器電壓調(diào)低的過程。處理器開始時負(fù)荷比較高,隨著負(fù)荷的減輕,實際電壓隨ICC減少而升高,并停止執(zhí)行VID編碼(①→②);進入狀態(tài)②之后,處理器經(jīng)過短暫延時,以便為降低VID的操作做準(zhǔn)備,然后對VID編碼進行初始化,導(dǎo)致電流拉回到狀態(tài)③;從狀態(tài)③到狀態(tài)④的變化,表示VID降低,從初始負(fù)載線窗口轉(zhuǎn)入較低的負(fù)載線窗口;從狀態(tài)④到狀態(tài)⑤表示在較低的VID負(fù)載窗口中,VCC隨ICC變化的瞬態(tài)過程。VID從低到高的調(diào)整過程與上述過程相反。

圖5 負(fù)載線

  五、結(jié)語

供電系統(tǒng)的工作質(zhì)量關(guān)系到計算機系統(tǒng)的穩(wěn)定和安全,供電系統(tǒng)工作不好,就等于計算機患了心臟病。自適應(yīng)供電技術(shù)不僅方便了用戶,也增加了CPU供電的安全性;動態(tài)供電使供電電壓恰好滿足CPU需求,不僅提高了系統(tǒng)穩(wěn)定性,還降低了CPU功耗。除此以外,作為一種智能化供電技術(shù),動態(tài)供電技術(shù)對實現(xiàn)過流保護和過熱保護等保護功能也更加方便了。

參考文獻(xiàn):
1. Intel Company, Voltage Regulator-Down (VRD) 10.0 Design Guide, 2004-2
2. 陳忠民,全面掌握Prescott主板最新供電技術(shù),微型計算機,2004,(13)
3. 陳忠民,主板供電技術(shù)面面觀,微型計算機,2003,(15)



關(guān)鍵詞: 功耗 主板 電壓 引腳

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉