一種鋰電池組保護板均衡充電的設計與實現(xiàn)
控制電路的單節(jié)鋰電池保護芯片可根據(jù)待保護的單節(jié)鋰電池的電壓等級、保護延遲時間等選型。分流放電支路電阻可采用功率電阻或電阻網(wǎng)絡實現(xiàn)。這里采用電阻網(wǎng)絡實現(xiàn)分流放電支路電阻較為合理,可以有效消除電阻偏差的影響,此外,還能起到降低熱功耗的作用。
本文引用地址:http://butianyuan.cn/article/246214.htm3均衡充電保護板電路仿真
根據(jù)上述均衡充電保護板電路工作的基本原理,在Matlab/Simulink環(huán)境下搭建了系統(tǒng)仿真模型,模擬鋰電池組充放電過程中保護板工作的情況,驗證該設計方案的可行性。為簡單起見,給出了鋰電池組僅由2節(jié)鋰電池串聯(lián)的仿真模型,如圖5所示。
?
?
圖5 2節(jié)鋰電池串聯(lián)均充保護仿真模型 模型中用受控電壓源代替單節(jié)鋰電池,模擬電池充放電的情況。圖5中,Rs為串聯(lián)電池組的電池總內(nèi)阻,RL為負載電阻,Rd為分流放電支路電阻。所采用的單節(jié)鋰電池保護芯片S28241封裝為一個子系統(tǒng),使整體模型表達時更為簡潔。
保護芯片子系統(tǒng)模型主要用邏輯運算模塊、符號函數(shù)模塊、一維查表模塊、積分模塊、延時模塊、開關模塊、數(shù)學運算模塊等模擬了保護動作的時序與邏輯。由于仿真環(huán)境與真實電路存在一定的差別,仿真時不需要濾波和強弱電隔離,而且多余的模塊容易導致仿真時間的冗長。因此,在實際仿真過程中,去除了濾波、光耦隔離、電平調(diào)理等電路,并把為大電流分流設計的電阻網(wǎng)絡改為單電阻,降低了仿真系統(tǒng)的復雜程度。建立完整的系統(tǒng)仿真模型時,要注意不同模塊的輸入輸出數(shù)據(jù)和信號類型可能存在差異,必須正確排列模塊的連接順序,必要時進行數(shù)據(jù)類型的轉(zhuǎn)換,模型中用電壓檢測模塊實現(xiàn)了強弱信號的轉(zhuǎn)換連接問題。
仿真模型中受控電壓源的給定信號在波形大體一致的前提下可有微小差別,以代表電池個體充放電的差異。圖6為電池組中單節(jié)電池電壓檢測仿真結果,可見采用過流放電支路均充的辦法,該電路可正常工作。
?
?
圖6鋰電池電壓檢測仿真結果
4系統(tǒng)實驗
實際應用中,針對某品牌電動自行車生產(chǎn)廠的需求,設計實現(xiàn)了2組并聯(lián)、10節(jié)串聯(lián)的36V8A.h錳酸鋰動力電池組保護板,其中單節(jié)鋰電池保護芯片采用日本精工公司的S28241,保護板主要由主電路、控制電路、分流放電支路以及濾波、光耦隔離和電平調(diào)理電路等部分組成,其基本結構如圖7所示。放電支路電流選擇在800mA左右,采用510Ω電阻串并聯(lián)構成電阻網(wǎng)絡。
?
?
圖7鋰電池組保護板調(diào)試
調(diào)試工作主要分為電壓測試和電流測試兩部分。電壓測試包括充電性能檢測過電壓、均充以及放電性能檢測欠電壓兩步??梢赃x擇采用電池模擬電源供應器代替實際的電池組進行測試,由于多節(jié)電池串聯(lián),該方案一次投入的測試成本較高。也可以使用裝配好的電池組直接進行測試,對電池組循環(huán)充放電,觀測過壓和欠壓時保護裝置是否正常動作,記錄過充保護時各節(jié)電池的實時電壓,判斷均衡充電的性能。但此方案一次測試耗費時間較長。對電池組作充電性能檢測時,采用3位半精度電壓表對10節(jié)電池的充電電壓監(jiān)測,可見各節(jié)電池都在正常工作電壓范圍內(nèi),并且單體之間的差異很小,充電過程中電壓偏差小于100mV,滿充電壓4.2V、電壓偏差小于50mV.電流測試部分包括過流檢測和短路檢測兩步。過流檢測可在電阻負載與電源回路間串接一電流表,緩慢減小負載,當電流增大到過流值時,看電流表是否指示斷流。短路檢測可直接短接電池組正負極來觀測電流表狀態(tài)。在確定器件完好,電路焊接無誤的前提下,也可直接通過保護板上電源指示燈的狀態(tài)進行電流測試。
實際使用中,考慮到外部干擾可能會引起電池電壓不穩(wěn)定的情況,這樣會造成電壓極短時間的過壓或欠壓,從而導致電池保護電路錯誤判斷,因此在保護芯片配有相應的延時邏輯,必要時可在保護板上添加延時電路,這樣將有效降低外部干擾造成保護電路誤動作的可能性。由于電池組不工作時,保護板上各開關器件處于斷開狀態(tài),故靜態(tài)損耗幾乎為0.當系統(tǒng)工作時,主要損耗為主電路中2個MOS管上的通態(tài)損耗,當充電狀態(tài)下均衡電路工作時,分流支路中電阻熱損耗較大,但時間較短,整體動態(tài)損耗在電池組正常工作的周期內(nèi)處于可以接受的水平。
經(jīng)測試,該保護電路的設計能夠滿足串聯(lián)鋰電池組保護的需要,保護功能齊全,能可靠地進行過充電、過放電的保護,同時實現(xiàn)均衡充電功能。
根據(jù)應用的需要,在改變保護芯片型號和串聯(lián)數(shù),電路中開關器件和能耗元件的功率等級之后,可對任意結構和電壓等級的動力鋰電池組實現(xiàn)保護和均充。如采用臺灣富晶公司的FS361A單節(jié)鋰電池保護芯片可實現(xiàn)3組并聯(lián)、12串磷酸鐵鋰電池組保護板設計等。最終的多款工業(yè)產(chǎn)品價格合理,經(jīng)3年市場檢驗無返修產(chǎn)品。
5結論
本文采用單節(jié)鋰電池保護芯片設計實現(xiàn)了多節(jié)鋰電池串聯(lián)的電池組保護板,除可完成必要的過電壓、欠電壓、過電流和短路保護功能外,還可以實現(xiàn)均衡充電功能。仿真和實驗結果驗證了該方案的可行性,市場使用情況檢驗了該設計的穩(wěn)定性。
dc相關文章:dc是什么
熱保護器相關文章:熱保護器原理
評論