電源變換器中電流/電壓模式相互轉(zhuǎn)化分析
本文先簡單的介紹了電流模式和電壓模式的工作原理和這兩種工作模式它們各自的優(yōu)缺點(diǎn);然后探討了理想的電壓模式利用輸出電容ESR取樣加入平均電流模式和通過輸入電壓前饋加入電流模式的工作過程。也討論了電流模式在輸出輕載或無負(fù)載時(shí),在使用大的電感或在占比大于0.5加入斜坡補(bǔ)償后,系統(tǒng)會(huì)從電流模式進(jìn)入電壓模式工作過程。
目前,電壓模式和電流模式是開關(guān)電源系統(tǒng)中常用的兩種控制類型。通常在討論這兩種工作模式的時(shí)候,所指的是理想的電壓模式和電流模式。電流模式具有動(dòng)態(tài)響應(yīng)快、穩(wěn)定性好和反饋環(huán)容易設(shè)計(jì)的優(yōu)點(diǎn),其原因在于電流取樣信號參與反饋,抵消了由電感產(chǎn)生的雙極點(diǎn)中的一個(gè)極點(diǎn),從而形成單階的系統(tǒng);但正因?yàn)橛辛穗娏魅有盘?,系統(tǒng)容易受到電流噪聲的干擾而誤動(dòng)作。電壓模式由于沒有電流取樣信號參與反饋,系統(tǒng)也就不容易受到電流噪聲的干擾。
然而,在實(shí)際的應(yīng)用中,通??此茷殡妷耗J降拈_關(guān)電源系統(tǒng),即系統(tǒng)沒有使用電流取樣電阻檢測電流信號,但也會(huì)采用其它的方式引入一定程度的電流反饋,從而提高系統(tǒng)動(dòng)態(tài)響,如:利用輸出電容ESR取樣加入平均電流模式,通過輸入電壓前饋加入電流模式。另一方面,看似為電流模式的開關(guān)電源系統(tǒng),在輸出輕載或無負(fù)載時(shí),系統(tǒng)會(huì)從電流模式進(jìn)入電壓模式。在使用大的電感時(shí),或在占比大于0.5加入斜坡補(bǔ)償后,系統(tǒng)會(huì)從電流模式向電壓模式過渡。本文將討論這些問題,從而幫助工程師在遇到系統(tǒng)不穩(wěn)定的時(shí)候從理論上分析,找到解決問題的辦法。
1 電壓模式的工作原理
電壓模式的控制系統(tǒng)如圖1所示。反饋環(huán)路只有一個(gè)電壓環(huán),電壓外環(huán)包括電壓誤差放大器,反饋電阻分壓器和反饋補(bǔ)償環(huán)節(jié)。電壓誤差放大器的同相端接到一個(gè)參考電壓Vref,反饋電阻分壓器連接到電壓誤差放大器反相端VFB,反饋環(huán)節(jié)連接到VFB和電壓誤差放大器的輸出端VC。輸出電壓微小的變化反映到VFB管腳,VFB管腳電壓與參考電壓的差值被電壓誤差放大器放大,然后輸出,輸出值為VC。
電壓誤差放大器輸出連接到PWM比較器的同相端,PWM比較器的反相端輸入信號為斜波發(fā)生器的輸出的連續(xù)鋸齒波,由時(shí)鐘同步信號產(chǎn)生。
每一個(gè)開關(guān)周期開始時(shí),PWM比較器的反相端電壓為0,PWM比較器輸出為高電平,高端的主MOSFET導(dǎo)通,電感所加的電壓為正,電感激磁,電流線性上升;PWM比較器的反相端電壓所加的電壓為時(shí)鐘同步信號產(chǎn)生的鋸齒波,電壓從0開始上升。
當(dāng)PWM比較器的反相端電壓增加到等于電壓誤差放大器輸出電壓VC時(shí),PWM比較器輸出從高電平翻轉(zhuǎn),輸出低電平,高端的主MOSFET關(guān)閉,低端的同步MOSFET或續(xù)流二極管導(dǎo)通,電感所加的電壓為負(fù),電感去磁,電流線性下降。下一個(gè)開關(guān)周期開始的時(shí)鐘同步信號到來時(shí),主MOSFET又導(dǎo)通,如此反復(fù)。
從電壓模式工作原理可以看到,系統(tǒng)沒有內(nèi)置的限流功能保護(hù)電路,同時(shí)對輸入和輸出的瞬變響應(yīng)緩慢。為了提高系統(tǒng)的可靠性,需要外加限流保護(hù)電路,注意到限流保護(hù)電路只起限流的作用,并不參與系統(tǒng)的內(nèi)部的反饋調(diào)節(jié)。
電壓模式為單反饋環(huán)控制系統(tǒng),環(huán)路增益是輸出電容ESR的函數(shù),因此反饋補(bǔ)償設(shè)計(jì)比較復(fù)雜,需要更多額外的器件仔細(xì)設(shè)計(jì)補(bǔ)償環(huán)路,來優(yōu)化負(fù)載瞬態(tài)響應(yīng)。另外,需要電解電容或鉭電容穩(wěn)定控制回路以維持良好的高頻響應(yīng);在相同均方根工作電流的需求下,相同電容值的電解電容或鉭電容比陶瓷電容的體積更大,同時(shí)輸出電壓的波動(dòng)也更大。同時(shí),由于環(huán)路的增益是輸入電壓的函數(shù),需要輸入電壓前饋。用于限流控制的電流檢測緩慢不準(zhǔn)確。如果多個(gè)電源和多個(gè)并聯(lián)相位操作,需要外部電路進(jìn)行均流控制。另一方面,由于電流信號不參與反饋,系統(tǒng)不會(huì)受到電流噪聲的干擾。
電壓模式的反饋設(shè)計(jì)通常取穿越頻率為1/5-1/10的開關(guān)頻率。環(huán)路補(bǔ)償采用III類補(bǔ)償網(wǎng)絡(luò):3個(gè)極點(diǎn)和2個(gè)零點(diǎn) [1]。2個(gè)零點(diǎn)安排在L-C諧振雙極點(diǎn)附近,以抵消雙極點(diǎn)產(chǎn)生的相位延遲;低頻積分電路用以提高的低頻直流增益;2個(gè)高頻極點(diǎn)以產(chǎn)年高頻噪聲衰減,保證在0dB穿越頻率以上環(huán)路增益保持下降。
2 電流模式的工作原理
電流模式的控制系統(tǒng)如圖2所示。在電流模式的結(jié)構(gòu)中,反饋有二個(gè)環(huán)路:一個(gè)電壓外環(huán),另一個(gè)是電流的內(nèi)環(huán)。電壓外環(huán)包括電壓誤差放大器,反饋電阻分壓器和反饋補(bǔ)償環(huán)節(jié)。電壓誤差放大器的同相端接到一個(gè)參考電壓Vref,反饋電阻分壓器連接到電壓誤差放大器反相端VFB,反饋環(huán)節(jié)連接到VFB和電壓誤差放大器的輸出端ITH。若電壓型放大器是跨導(dǎo)型放大器,則反饋環(huán)節(jié)連接到電壓誤差放大器的輸出端ITH和地。目前,在高頻DC/DC的應(yīng)用中,跨導(dǎo)型放大器應(yīng)用更多。本文就以跨導(dǎo)型放大器進(jìn)行討論。
輸出電壓微小的變化反映到VFB管腳, VFB管腳電壓與參考電壓的差值被跨導(dǎo)型放大器放大,然后輸出,輸出值為VITH,跨導(dǎo)型放大器輸出連接到電流比較器的同相端,電流比較器的反相端輸入信號為電流檢測電阻的電壓信號VSENSE。由此可見,對于電流比較器,電壓外環(huán)的輸出信號作為電流內(nèi)環(huán)的給定信號。對于峰值電流模式,工作原理如下:在時(shí)鐘同步信號到來時(shí),高端的主開關(guān)管開通,電感激磁,電流線性上升,電流檢測電阻的電壓信號也線性上升,由于此時(shí)電壓外環(huán)的輸出電壓信號高于電流檢測電阻的電壓,電流比較器輸出為高電壓;當(dāng)電流檢測電阻的電壓信號繼續(xù)上升,直到等于電壓外環(huán)的輸出電壓信號時(shí),電流比較器的輸出翻轉(zhuǎn),從高電平翻轉(zhuǎn)為低電壓,邏輯控制電路工作,關(guān)斷高端的主開關(guān)管的驅(qū)動(dòng)信號,高端的主開關(guān)管關(guān)斷,此時(shí)電感開始去磁,電流線性下降,到一個(gè)開關(guān)周期開始的時(shí)鐘同步信號到來,如此反復(fù) [2]。
電流模式的Buck變換器需要精密的電流檢測電阻并且這會(huì)影響到系統(tǒng)的效率和成本,但電流模式有更多的優(yōu)點(diǎn):①反饋內(nèi)在cycle-by-cycle峰值限流;②電感電流真正的軟起動(dòng)特性;③精確的電流檢測環(huán);④輸出電壓與輸入電壓無關(guān),一階的系統(tǒng)容易設(shè)計(jì)反饋環(huán),動(dòng)態(tài)響應(yīng)快、系統(tǒng)的穩(wěn)定余量大穩(wěn)定性好,增益帶寬大,即便是輸出只用陶瓷電容,也容易設(shè)計(jì)補(bǔ)償,補(bǔ)償管腳只用簡單RC網(wǎng)絡(luò)就能對輸出負(fù)載瞬態(tài)作出穩(wěn)定響應(yīng);⑤精確、快速的電流均流,易實(shí)現(xiàn)多相位/多變換器的并聯(lián)操作得到更大輸出電流;⑥允許大的輸入電壓紋波從而減小輸入濾波電容,提高了輸入的功率因素;輸出允許用陶瓷電容,因此這種模式更省空間、省成本、體積更小、價(jià)格更便宜。但是,峰值電流模式中占空比大于50%時(shí),系統(tǒng)的開環(huán)不穩(wěn)定,產(chǎn)生次諧波振蕩;而且系統(tǒng)會(huì)受到電流噪聲的干擾而誤動(dòng)作。
3 理想的電壓模式向電流模式轉(zhuǎn)化
3.1 理想電壓模式中輸出電容ESR取樣形成的平均電流模式
理想的電壓模式在一定的反饋網(wǎng)絡(luò)參數(shù)下,很難在整個(gè)電壓輸入范圍和輸出負(fù)載變化范圍內(nèi)都能穩(wěn)定的工作。輸出負(fù)載變化可以通過加大輸出電容同時(shí)使用ESR值大的電容來優(yōu)化其動(dòng)特性,盡管這樣做導(dǎo)致系統(tǒng)的成本和體積增加,同時(shí)增大輸出的電壓紋波。
通常,從直觀上理解,輸出電容ESR和輸出電容形成一個(gè)零點(diǎn),對于電流模式,這個(gè)零點(diǎn)不是必需的,因?yàn)殡娏髂J绞菃坞A的系統(tǒng),而且這個(gè)零點(diǎn)導(dǎo)致高頻的增益增加,系統(tǒng)容易受到高頻噪聲的干擾。所以電流模式或者使用ESR極低的陶瓷電容,使ESR零點(diǎn)提升到更高的頻率,就不會(huì)對反饋系統(tǒng)產(chǎn)生作用,或者再加入一個(gè)極點(diǎn)以抵消零點(diǎn)在高頻段的作用,加入極點(diǎn)的方法就是在ITH管腳并一個(gè)對地的電容。
電壓模式是LC形成的二階系統(tǒng),這個(gè)零點(diǎn)的引入可以一定的程度上抵消LC雙極點(diǎn)的一個(gè)極點(diǎn),使其向單階系統(tǒng)轉(zhuǎn)化。ESR越大,作用越明顯。因此電壓模式輸出電壓通常使用ESR大的電容。
另一方面,注意到,輸出電壓為:
Vco為輸出電容的容抗上的電壓,ΔIL為電感的紋波電流,ΔIL=α*Iout,α為電流紋波系數(shù),一般取0.2~ 0.4。
輸出電壓的小信號值為:
若ESR小,式中后面的一項(xiàng)基本可以忽略;但是,由于電壓模式通常使用ESR值較大的輸出電容,這樣ESR就不可以忽略,由于ESR的作用,相當(dāng)于在輸入電壓的反饋信號中引入了一定程度的電流模式,電流模式反饋量為:
輸出電容的ESR將采樣的電流信號送到電壓誤差放大器的輸入端,和輸出電壓信號加在一起,經(jīng)過電壓誤差放大器放大,再送到PWM比較器,其工作的原理相當(dāng)于平均電流反饋。在電壓模式中,使用ESR大的輸出電容,相當(dāng)于引入一定程度的平均電流模式,從而增加系統(tǒng)對輸出負(fù)載變化的動(dòng)態(tài)響應(yīng),提高系統(tǒng)的穩(wěn)定性。
3.2 理想電壓模式中輸入電壓前饋形成的電流模式
對于輸入電壓的變化,目前通常采用輸入電壓前饋技術(shù),來提高系統(tǒng)對輸入電壓變化的響應(yīng)。輸入電壓前饋如圖3所示。圖中的實(shí)線鋸齒波為內(nèi)部時(shí)鐘信號產(chǎn)生的斜率固定為k的正常鋸齒波,在沒有電壓前饋時(shí),產(chǎn)生的占空比為d*Ts,則有以下公式:
Vc=k*d*Ts
輸入電壓前饋就是在內(nèi)部鋸齒波上加入隨輸入電壓變化的斜坡,或者從VC信號減去此斜坡。當(dāng)輸入電壓突然增加時(shí),內(nèi)部鋸齒波和外加斜坡之和的波形為圖3中的虛線所示。若外加斜坡的斜率為ks,則總的斜率為:k+ks,注意到:ks∝Vin,也就是ks=k*Vin*Vin,所以此時(shí)的占空比為:
即:占空比隨輸入電壓的增加立刻而減少,系統(tǒng)提前對輸入電壓變化做出相應(yīng)的響應(yīng)。
若不考慮效率,由功率平衡可以得到:Vin*Iin=Vout*Iout,所以有;
從上式可以看到,所加的輸入電壓前饋信號也就是輸入的電流信號。事實(shí)上可以這樣理解:輸入電壓前饋技術(shù)也就是在理想的電壓模式中,疊加一定的電流反饋,以形成一定的電流反饋,從而增加系統(tǒng)對輸入電壓變化的響應(yīng)。
4 理想的電流模式向電壓模式轉(zhuǎn)化
4.1 輕載時(shí)電流模式趨向于電壓模式
電源系統(tǒng)進(jìn)入輕載或空載時(shí),變換器通常工作在突發(fā)模式和跳脈沖模式 [3]。對于跳脈沖模式,變換器進(jìn)入非連續(xù)電流模式,高端的開關(guān)管的開通時(shí)間為控制器所設(shè)定的最小導(dǎo)通時(shí)間,同時(shí)在有一些開關(guān)周期,高端的開關(guān)管不導(dǎo)通,也就是屏蔽,或跳去一些開關(guān)脈沖,以維持輸出電壓的調(diào)節(jié)。注意到:在輕載或空載時(shí),電流信號很小,系統(tǒng)也很難檢測到電流信號,另一方面,由于高端的開關(guān)管的開通時(shí)間固定為最小導(dǎo)通時(shí)間,已不受電流檢測信號的調(diào)節(jié),電流反饋事實(shí)上已經(jīng)不起作用,也就不參與到反饋環(huán)節(jié)。系統(tǒng)此時(shí)工作于標(biāo)準(zhǔn)的電壓模式。
對于突發(fā)模式,輸出電壓完全由滯洄比較器控制,滯洄比較器控制通過檢測輸出電壓的變化,將輸出電壓設(shè)定在允許的上限和下限的范圍內(nèi),系統(tǒng)此時(shí)也是工作于標(biāo)準(zhǔn)的電壓模式。
4.2 使用大的電感值趨向于電壓模式
輸出電感的選擇及設(shè)計(jì)是基于輸出DC電壓的穩(wěn)態(tài)和瞬態(tài)的要求。較大的電感值可減小輸出紋波電流和紋波電壓,減小磁芯的損耗,但在負(fù)載瞬變過程中改變電感電流的時(shí)間會(huì)加長,同時(shí)增大電感的成本和體積。較小的電感值可以得到較低的直流銅損,但是交流磁芯損耗和交流繞線電阻損耗會(huì)變大。
同時(shí)使用大的電感時(shí),電感電流的斜率減小,在理想的狀態(tài)下,若電感值為無窮大,那么在整個(gè)開關(guān)周期,電感電流為直流值,電流檢測信號就不在起作用,也就是標(biāo)準(zhǔn)的電壓模式。因此使用的電感值越大,工作于電流模式的控制就越接近于電壓模式,在負(fù)載瞬變過程中,系統(tǒng)動(dòng)特性越差。因此對于電流模式,折衷的方法是選擇電感紋波電流峰峰值在輸出負(fù)載電流額定值的20%到40%之間。
4.3 斜坡補(bǔ)償?shù)碾娏髂J节呄蛴跒殡妷耗J?/STRONG>
理論上,當(dāng)占空比大于50%時(shí),電流模式就要加斜坡補(bǔ)償,系統(tǒng)才能穩(wěn)定的工作。否則,就會(huì)產(chǎn)生次諧波振蕩。在實(shí)際的應(yīng)用中,占空比大于40%時(shí),就要加斜坡補(bǔ)償。占空比大于50%時(shí),斜坡補(bǔ)償,由于電感充分激磁,而去磁不足,因此輸出的電壓將比預(yù)設(shè)定的值高,并將繼續(xù)升高,直到較慢的電壓控制回路調(diào)整電流設(shè)定點(diǎn)為止,然后輸出電壓又下降至低于期望值,形成次諧波振蕩,其典型的特性就是在一個(gè)開關(guān)周期,脈沖寬度較寬,在下一個(gè)開關(guān)周期,脈沖寬度變窄,在每三個(gè)開關(guān)周期,脈沖寬度又變寬,如此反復(fù)。此時(shí)可以看到輸出電壓不穩(wěn)定,有時(shí)還可以聽到音頻的噪聲。
圖4中,紅線斜坡補(bǔ)償,實(shí)線三角形波為沒有加斜坡補(bǔ)償?shù)碾姼械碾娏鞑ㄐ危摼€為加斜坡補(bǔ)償?shù)碾姼械碾娏鞑ㄐ?。如果用下降沿的鋸齒波電壓,則其加在電壓誤差放大器的輸出上,用以控制電流檢測信號;如果用上升沿的鋸齒波電壓,則其加在電流檢測信號上,然后與電壓誤差放大器的輸出進(jìn)行比較。
注意到,內(nèi)部的斜坡補(bǔ)償將使總的電流斜坡減小,即斜坡補(bǔ)償使真正的電感電流的斜率降低,從而促使變換器從電流模式向電壓模式轉(zhuǎn)化,所加的斜坡補(bǔ)償越大,變換器越接近電壓模式。同時(shí),斜坡補(bǔ)償也降低了電流環(huán)路的增益,降低的系統(tǒng)內(nèi)部設(shè)定的限流點(diǎn),使系統(tǒng)實(shí)際所加的負(fù)載電流值降低。
參考文獻(xiàn)
[1] A.I. Pressman. Switching Power Supply Design (second edition). New York: McGraw-Hill Publishing Co., 1998.
[2] 劉松. 降壓變換器電流取樣電阻三種位置的選擇. 電子設(shè)計(jì)應(yīng)用, 2008, (2): 111 ~ 113.
[3] 劉松. BUCK變換器輕載時(shí)三種工作模式原理及應(yīng)用. 電力電子技術(shù), 2007, 41(11): 75 ~ 76.
作者介紹:劉松,男,碩士,1971生,籍貫湖北省武漢市, 萬代半導(dǎo)體元件有限公司應(yīng)用中心經(jīng)理,曾任凌特有限公司上海辦事處應(yīng)用工程師,ST意法半導(dǎo)體上海有限公司高級電源系統(tǒng)工程師,現(xiàn)主要從事開關(guān)電源系統(tǒng)及模擬電路的應(yīng)用研究和開發(fā)工作。發(fā)表論文30多篇,獲發(fā)明專利一項(xiàng)及廣東省科技進(jìn)步二等獎(jiǎng)一項(xiàng)。
評論