新聞中心

EEPW首頁 > 測試測量 > 設計應用 > 雙流束熱量表的流量測量技術研究

雙流束熱量表的流量測量技術研究

作者: 時間:2013-08-03 來源:網絡 收藏
1.引言

我國熱量表技術較國外先進水平還有較大的差距。從國產熱量表的三個重要組成部分積算儀、流量傳感器和溫度測量技術現狀看,由于多采用進口微處理器,積算儀的有關問題得到了較好的解決。溫度測量多采用技術較成熟PT1000鉑電阻,也得到較好的解決。目前問題較多的是流量測量部分,國產熱量表基表多采用原有熱水表,其測量精度和可靠性難以達到熱量表的流量技術要求,因此開發(fā)精度高、工作可靠的熱量表基表,是目前熱量表研制的重要課題。本文對熱量表單流束基表技術問題進行分析探討,提出了“導流片”分流和葉輪室頂蓋設置“調節(jié)筋條”調節(jié)當量脈沖的新方法,得到了很好的效果。

2.單流束基表設計的技術方案

傳統(tǒng)的單流束基表結構如圖1所示,為了保證葉輪按一定的方向旋轉,其進水口和出水口往往偏心設置,并在一定的部位設置當量脈沖的調整部件。這種結構存在以下弊端,首先進水口和出水口的偏心設置,給機械加工帶來一定的難度,在加工進、出水口時,由于偏心設置,給工件的裝夾、找正帶來不便,費時費工,效率低下;同時給外形設計造成一定的困難,難以設計出美觀的外形。再者,以往熱量表基表多采用原有的單流束熱水表,由于價格等因素的制約,其設計精度、材料的使用等存在較多的問題,其精度難以滿足熱量表流量檢測精度的要求。


圖1 傳統(tǒng)的單流束基表結構示意圖

為了消除上述弊端,本研究對熱量表基表進行了全新設計。其結構如圖2所示,為了便于加工,將進、出水口設計在一條直線上,這種設計給工件加工帶來很大的方便,便于保證精度,可大大提高機加工效率。和傳統(tǒng)基表相比,增加了葉輪式底座,底座和金屬表殼過盈配合,葉輪室上蓋和底座采用耐高溫的PPS制作,可保證熱水長時間浸泡不致發(fā)生變形,以保證熱量表工作的可靠性。


圖2 新型單流束基表
1-表殼底座 2-葉輪室底座
3-整流隔柵 4-葉輪
5-葉輪室上蓋 6-表殼蓋
7-擋塊 8-半圓膜片
9-剛玉 1 0-軸套

葉輪式底座的俯視形狀如圖3所示,為了保證水流對葉輪葉片有一定的沖擊角度和水流順利流出基表,葉輪式底座進水口和出水口與表殼的進水口、出水口有一定的夾角,同時在進水口處設置一三角形的導流片。為了調節(jié)脈沖當量,在葉輪式上蓋朝向葉輪的一面設置一橫向筋條,通過調整筋條和基表進、出水口軸線之間的夾角,達到調節(jié)脈沖當量的目的。


圖3 葉輪式底座

3.基表內部水流特性的分析

熱量表工作時水流從基表進水口經整流隔柵進入基表,在葉輪室底座入口處由導流片分流成兩股,分別從兩個通道進入葉輪室。水流在葉輪室內產生旋轉運動,推動葉輪旋逆時針旋轉,之后依次經葉輪室出口、基表出口流出。本設計中所采用了流量傳感方式,就是通過葉輪室上蓋上方設置的三個電感在葉輪旋轉時產生振蕩信號來實現的。

由圖3可見,葉輪室入口的收縮流道截面積A1沿水流方向逐漸減小,而擴張流道截面積A2逐漸增大,由不可壓縮流體的連續(xù)性方程可知,過流面積和流速成反比,進入收縮流道的水流速度V1將增大,而進入擴張流道的水流速度V2將減小。由伯努利方程可以得到,V1減小,p 1增大,V2增大,p2減小,如此從兩個通道進入葉輪室的水流之間就存在壓強差 ,此壓強差將推動水流向壓強小的方向流動,從而推動葉輪逆時針旋轉;收縮通道提高了進入腔體的水流速度,增大其動量,在微小流量時,葉輪受軸與軸承之間摩擦阻力的影響較大,如果基表中不設此導流片而是一個單一通道,水流更易直接從葉輪間隙流過,而不推動葉輪旋轉,從而使始動流量值增大。

由上述分析可知,在流動初始時刻,兩通道的幾何形狀對決定葉輪旋轉方向至關重要,該設計依靠兩通道出口的壓強差使水流在基表腔體內沿逆時針方向流動。第二通道出口水流速度V2大于第一通道出口速度V1,并且偏轉的角度較V1更大,這種流動機制決定了水流開始流動時葉輪必須沿逆時針方向旋轉。

最初設計的葉輪室及導流片形狀如圖3,導流片前端靠近葉輪室外徑處是一尖角,其與中心連線和橫軸的夾角為8度,在進行85℃熱水試驗后,導流片變形受損,因此,必須加以改進。改進從兩個方面著手,一是更換耐高溫的材料,再就是改變導流片的幾何形狀。

導流片的改進示意圖見圖4。改進前的導流片橫截面為三角形ABC,改進后為五邊形AAB’BC。A’,B’比A、B兩點向中心線方向偏移2°。如此改動之后導流片的橫截面積增大,厚度增加,強度也必然相應提高。同時,導流片靠近中心線一側傾斜角度減小,改變了收縮通道的形狀,流經此通道的水流流動情況相應的會發(fā)生變化。

上一頁 1 2 下一頁

評論


技術專區(qū)

關閉