電力工業(yè)中高壓開(kāi)關(guān)柜隔離觸頭溫度監(jiān)測(cè)研究
3.2 光路復(fù)用方案
六個(gè)光纖光柵溫度傳感器的同時(shí)測(cè)量就涉及到光路的復(fù)用問(wèn)題,光纖光柵傳感器的復(fù)用可以采用波分復(fù)用(WDM)、空分復(fù)用(SDM)或時(shí)分復(fù)用(TDM)方式,本系統(tǒng)是采用空分復(fù)用和波分復(fù)用方法。如圖2 所示,用1′8 耦合器實(shí)現(xiàn)對(duì)傳感器的空分復(fù)用,這樣可以避免采用單一波分復(fù)用的弊端,即多個(gè)傳感器串連在一根光纖上,在其中一個(gè)傳感器損壞時(shí)會(huì)影響其它傳感器信號(hào)的傳輸;同時(shí)在傳感器工作波長(zhǎng)的選擇上又采用了波分復(fù)用方式,用來(lái)提高系統(tǒng)的測(cè)量速度,即在波長(zhǎng)解調(diào)時(shí)采用一個(gè)掃描周期可以實(shí)現(xiàn)六個(gè)傳感器的同時(shí)測(cè)量。
在圖2 中,A、B、C三相的六個(gè)光纖光柵溫度傳感器處于高電壓側(cè),分別安裝在靜觸頭孔徑內(nèi),而耦合器、波長(zhǎng)解調(diào)器、控制器以及數(shù)據(jù)處理電路都處于地電位側(cè),安裝在控制室內(nèi),采用長(zhǎng)距離的光纖傳輸來(lái)實(shí)現(xiàn)高電壓側(cè)絕緣隔離。圖中的A1、B1、C1,A2、B2、C2是本文設(shè)計(jì)的光纖光柵溫度傳感器,分別分布在隔離觸頭的上側(cè)和下側(cè)A、B、C 三相上,在常溫下傳感器的波長(zhǎng)分別為1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,靈敏度為0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,測(cè)量范圍為0~110℃;耦合器為
由7 個(gè)3dB耦合器組合而成的1′8耦合器;波長(zhǎng)解調(diào)器為采用壓電陶瓷驅(qū)動(dòng)標(biāo)準(zhǔn)具實(shí)現(xiàn)波長(zhǎng)掃描,其工作波長(zhǎng)范圍為1548~1558nm,覆蓋6 個(gè)傳感器在0~110℃溫度變化時(shí)的所有波長(zhǎng)帶;控制器在數(shù)據(jù)處理器的控制下實(shí)現(xiàn)波長(zhǎng)解調(diào)器的掃描。
3.3 觸頭溫度模型
高壓開(kāi)關(guān)柜在運(yùn)行時(shí),觸頭、母線、電流互感器、柜體等構(gòu)成了多個(gè)熱源,高壓開(kāi)關(guān)柜及內(nèi)部各部件又構(gòu)成了復(fù)雜的熱阻網(wǎng)絡(luò)[14]。在此系統(tǒng)中,要通過(guò)理論推導(dǎo)出觸頭溫升與光纖光柵傳感器溫升間的數(shù)學(xué)關(guān)系是比較困難的,因此本文通過(guò)試驗(yàn)方法建立了它們之間的數(shù)學(xué)模型。
溫升實(shí)驗(yàn)是在10kV 高壓開(kāi)關(guān)柜上進(jìn)行的,實(shí)驗(yàn)時(shí)三相觸頭接觸正常,工作額定電流為1kA,室溫為25℃。圖3 是上隔離觸頭B 相的溫升過(guò)程曲線,可以看出光纖光柵傳感器測(cè)量的溫升變化要比觸頭的實(shí)際溫升變化慢,但它們的變化趨勢(shì)是相同的,大約在3h 以后溫度場(chǎng)變化趨于穩(wěn)定。測(cè)量溫度與實(shí)際溫度間的差值是由于傳感器采用非接觸方式測(cè)量溫度,它依靠靜觸頭的輻射來(lái)傳遞熱量。表1 是其溫升測(cè)量數(shù)據(jù)。
評(píng)論