量身訂制的DSP元件設(shè)計方案
行動電話
標(biāo)準(zhǔn)行動電話有兩種電源模式:
(1)等待電話的待機模式;
(2)實際撥打電話的通話模式。
處于待機模式時,數(shù)據(jù)機功能(在等待電話時)會以低功耗模式操作,應(yīng)用功能(數(shù)位語音編碼和解碼)的電源則可完全切斷。手機進入通話模式后,數(shù)據(jù)機功能和應(yīng)用功能就會在功耗較高的模式下操作。低耗電制程已能滿足這類手機的處理需求,因此許多產(chǎn)品都採用這種制程以節(jié)省電力,此時產(chǎn)品凈功耗與每種模式所佔用的時間有關(guān)。它們還能使用電壓和頻率調(diào)整技術(shù),以便根據(jù)操作模式的作業(yè)需求來調(diào)整元件功耗。先進手機還增加數(shù)位相機、MP3和錄影功能,所以其操作模式也變得更多。為了支援這些操作模式,行動電話通常會採用不同類型處理器所組成的異質(zhì)架構(gòu),由DSP和各個操作模式專用的硬體加速器來執(zhí)行數(shù)據(jù)機和相機等應(yīng)用所需的訊號處理功能,再由DSP搭配負責(zé)使用者界面和系統(tǒng)控制功能的RISC處理器。如果某個模式不會用到加速器功能,系統(tǒng)也可切斷它們的電壓或時脈,例如待機模式不需要使用者界面時,可將RISC核心的電源關(guān)機。
可攜式應(yīng)用會視需要採取各種省電技術(shù),以便將重要操作模式的功耗減到最低。
基礎(chǔ)設(shè)施系統(tǒng)
封包語音(VoIP)或基地臺收發(fā)器等設(shè)備所用的無線和有線基礎(chǔ)設(shè)施雖屬于「插入式」應(yīng)用,卻仍須在不同的功耗限制下操作。有些系統(tǒng)會在電源供應(yīng)和系統(tǒng)散熱能力已經(jīng)固定的機架上,增加新的功能單元或通道容量,這些系統(tǒng)通常必須在室內(nèi)空調(diào)系統(tǒng)故障時繼續(xù)正常操作。每個機架的總功耗都不能超過現(xiàn)有電源供應(yīng)的供電能力,電源供應(yīng)會將電源提供給機架上的電路板,每張電路板再將電源分配給電路板上的不同元件。隨著半導(dǎo)體元件日益精密,晶片還能提高操作頻率或內(nèi)建多顆DSP處理器來支援更多通道。另一方面,不斷縮小的電路結(jié)構(gòu)卻讓晶片產(chǎn)生更多功耗,因此透過封裝提高散熱效率也變得更重要。由于這些系統(tǒng)必須非??煽?,所以在分析其電源和散熱需求時,應(yīng)將所有處理器都在最大負載下工作的情況列入考慮。
為了降低滿負載的操作功耗,這類系統(tǒng)多半會採用在較低電壓下操作的高效能制程,并且搭配對于任何應(yīng)用都有幫助的多時脈域和時脈閘控技術(shù)。這些系統(tǒng)不會利用多電壓域技術(shù)降低功耗,因其包含大量而密集的處理器,此時若採用多電壓域技術(shù)會造成電路板設(shè)計復(fù)雜性大幅增加。靜態(tài)電壓調(diào)整有助于節(jié)省功耗,由于功耗會隨著操作電壓的平方而改變,所以這些設(shè)計會選擇較低的操作電壓。這些元件還能整合更多核心,以彌補某些核心在較低頻率下操作所不足的效能,例如與其使用四個在1.2V下操作的300MHz核心,還不如使用6個在1.0 V下操作的200MHz核心,因為兩種解決方案的MHz效能(和通道處理能力)都是1200MHz,但后者功耗卻只有前者的(1.0V/1.2V)2,大約是69%。這些元件的晶片面積大都用于內(nèi)建記憶體,其中又以資料記憶體為主。由于在特定的通道處理密度下,每顆晶片所需的資料記憶體也是定值,而且其中多數(shù)記憶體又會直接分配給各個核心使用,所以增加核心并不會造成晶片總面積等比例增加,所帶來的低功耗優(yōu)點則足以彌補額外增加的成本。
功耗最佳化必須符合應(yīng)用需求
不同的DSP應(yīng)用設(shè)備需要不同的策略來滿足其需求,例如基礎(chǔ)設(shè)施系統(tǒng)希望降低最大負載條件下的功耗,可攜式應(yīng)用則希望將電池的電力消耗減至最少,它們的需求顯然就有極大差異。事實上,就算同類型的應(yīng)用都可能有著極為不同的要求,例如不同的可攜式應(yīng)用必須採取不同的電源最佳化技術(shù)來滿足各自的操作需求。半導(dǎo)體廠商想要服務(wù)各種市場,就必須掌握多種制程、設(shè)計和架構(gòu)技術(shù),才能針對目標(biāo)應(yīng)用提供最合適的元件。
評論