新聞中心

EEPW首頁 > 設(shè)計(jì)應(yīng)用 > WiMax終端收發(fā)系統(tǒng)結(jié)構(gòu)分析

WiMax終端收發(fā)系統(tǒng)結(jié)構(gòu)分析

作者: 時間:2009-03-25 來源:網(wǎng)絡(luò) 收藏
2001年12月由IEEE頒布的IEEE 802.16標(biāo)準(zhǔn)規(guī)范了工作在10~66GHz頻段的固定寬帶無線接入系統(tǒng)的空中接口物理層和MAC層,應(yīng)用于視距(LOS)傳輸。IEEE 802.16a將其拓展到非視距(NLOS)傳輸并分別指定了物理層(PHY)的正交頻分復(fù)用(OFDM)和媒體訪問控制層(MAC)的正交頻分多址接入(OFDMA)工作方式,支持語音和視頻等實(shí)時性業(yè)務(wù)。IEEE 802.16d進(jìn)一步完善了系統(tǒng)性能和簡化部署等。IEEE 802.16e/Mobile WiMax標(biāo)準(zhǔn)則較前幾個標(biāo)準(zhǔn)的最大區(qū)別在于對移動性的支持,隨著技術(shù)的進(jìn)一步成熟,已經(jīng)得到越來越廣泛的關(guān)注和應(yīng)用。IEEE 802.16工作組可以看作標(biāo)準(zhǔn)的制定者,而WiMax則是標(biāo)準(zhǔn)的推動者。設(shè)備作為WiMax應(yīng)用的重要一環(huán),其射頻前端設(shè)計(jì)也是值得高度重視的部分之一。

一般而言,在現(xiàn)代的射頻系統(tǒng)中,天線接收到的信號頻率很高而且具有極小的信道帶寬。如果考慮直接濾出所需信道,則濾波器的Q值將非常大,而且高頻電路在增益、精度和穩(wěn)定性等方面的問題,在目前的技術(shù)條件下,對信號直接在高頻段解調(diào)是不現(xiàn)實(shí)的。使用混頻器將高頻信號降頻,在一個中頻頻率進(jìn)行信道濾波、放大和解調(diào)可以解決高頻信號處理所遇到的上述困難,但是又引入了另一個嚴(yán)重的問題,即鏡像頻率干擾:當(dāng)兩個信號的頻率與本振(LO)信號頻率差在頻率軸上對稱地位于本振信號的兩邊,或者說它們的絕對值相等但是符號相反,那么經(jīng)過混頻后這兩個信號都將被搬移到同一個中頻頻率。如果其中一個是有用信號,另一個是噪聲信號,那么噪聲信號所在的頻率就稱為鏡像頻率,這種經(jīng)過混頻后的干擾現(xiàn)象通常被稱為鏡頻干擾。為了抑制鏡頻干擾,普遍采用的方法是利用濾波器濾除鏡像頻率成份。但是由于該濾波器工作在高頻頻段,其濾波效果取決于鏡頻頻率與信號頻率之間的距離,或者說取決于中頻頻率的高低。如果中頻頻率高,信號頻率與鏡像頻率相距較遠(yuǎn),那么鏡像頻率成份就受到較大的抑制;反之,如果中頻頻率較低,信號頻率與鏡像頻率相隔不遠(yuǎn),濾波的效果就較差。但另一方面,由于信道選擇在中頻頻段進(jìn)行,基于同樣的理由,較高的中頻頻率對信道選擇濾波器的要求也較高。所以,鏡像頻率抑制與信道選擇形成了一對矛盾,而中頻頻率的選擇成為平衡這對矛盾的關(guān)鍵。在一些要求較高的應(yīng)用中,常常使用兩次或三次變頻來取得更好的折衷。

通常而言,由于要濾出一個具有很高中心頻率和受很大干擾的窄信道要求濾波器具有高的 Q 值。在外差結(jié)構(gòu)中,信號頻帶被變換到低得多的頻率,從而降低了對信道選擇濾波器的要求。外差結(jié)構(gòu)可以從鏡像抑制和信道選擇這兩方面進(jìn)行綜合考慮,由于鏡像信號降低了接收器的靈敏度,那么中頻的選擇要求從靈敏度和選擇性兩個方面進(jìn)行權(quán)衡。在IEEE802.16e/的射頻前端設(shè)計(jì)而言,外差式發(fā)送端較直接變換對DAC的要求較低,而且鏡像問題變得不突出。但是模塊器件數(shù)增加了,這意味著更多的功耗。抑制鏡像信號的最常用的方法就是利用放在混頻器前面的一個鏡像抑制濾波器,濾波器設(shè)計(jì)成使它在有用頻帶上有較小的損耗,而鏡像頻帶上則有很大的衰減。外差結(jié)構(gòu)需要鏡像濾波器,但是由于大的頻率分離, 圖像濾波器的設(shè)計(jì)是比較簡單的。這里還需要注意的是:不同頻率濾波器的可達(dá)性和物理尺寸。

超外差接收機(jī)在抑制鏡像頻率干擾、敏度和選擇性上有較大優(yōu)勢,而且多級轉(zhuǎn)換無直流偏移和信號泄漏,但是也有成本高、對IR濾波器有較高要求、需要低噪聲放大器(LNA)和混頻器(Mixer)與50W的良好匹配等缺點(diǎn)。在某些情況下,鏡像頻率抑制濾波器和信道選擇濾波器并不適于單片集成,從而導(dǎo)致前級(如LNA)的50歐姆阻抗匹配,加重了LNA等模塊增益,穩(wěn)定性,功耗等性能的折衷問題。

零中頻(零差,直接下變頻)結(jié)構(gòu)的簡單性相對于外差結(jié)構(gòu)有兩個很重要的優(yōu)點(diǎn)。第一,鏡像問題被克服了,因此,不需要鏡像濾波器,所以 LNA 也不需要驅(qū)動 50 歐姆的負(fù)載。其次,SAW 濾波器和后續(xù)的下變頻級可代之以適合單片集成的低通濾波器和基帶放大器。 但是,零中頻結(jié)構(gòu)在信道選擇時通過有源低通濾波器抑制信道外的干擾比使用無源濾波器更加困難,并且產(chǎn)生了直流偏移,IQ失配,偶階失真,閃爍噪聲,LO 泄漏等問題。

零中頻結(jié)構(gòu)對射頻濾波器的要求較為寬松,而且在中頻部分,基帶濾波器一般較帶通濾波器更容易實(shí)現(xiàn)。在此類結(jié)構(gòu)中,MIMO技術(shù)也容易實(shí)現(xiàn)。另外,一般而言,零中頻結(jié)構(gòu)在功耗方面也較為優(yōu)越。但是需要格外注意的是,IQ均衡問題,高SNDR的DAC設(shè)計(jì),直流偏移消除等問題,尤其是在接收端方面的直流偏移消除問題,需要非常小心的對待,并且注意通道的均衡,而帶外噪聲的濾出則需要高階濾波器。

相比于零中頻結(jié)構(gòu),數(shù)字處理可以避免I Q 的失配問題。而且數(shù)字中頻結(jié)構(gòu)還具有多種優(yōu)點(diǎn)。在基帶-中頻中的IQ均衡問題、直流偏移問題容易解決;較低的帶外整形泄露要求和可調(diào)的振幅;而且信號在基帶-中頻段之后對帶通濾波器的要求較低,很容易到達(dá)指標(biāo);混頻器的負(fù)載能力和振幅要求對衰減器要求也不高。但是,數(shù)字中頻接收機(jī)對模數(shù)轉(zhuǎn)換器(ADC)有較高要求,如需要ADC有足夠高的動態(tài)范圍,較低的量化噪聲和熱噪聲,好的線性度,足夠大的動態(tài)范圍。在一些低速率應(yīng)用中,如IEEE802.15.4中,帶通Σ-Δ ADC( Band pass Σ-Δ ADC)性能較為適宜,但帶通Σ-Δ ADC卻有有較大的設(shè)計(jì)難度。同時還意味著對基帶部分的DSP性能要求更高,例如進(jìn)行窗式濾波等。而且DAC要求也相應(yīng)提高,通常需要10~12比特的分辨率和較高的速率。對鏡像抑制濾波器的性能也變得苛刻,甚至在某些頻率區(qū)域需要對RF濾波器補(bǔ)償。所以在WiMax應(yīng)用中,數(shù)字中頻結(jié)構(gòu)很有潛力,但是需要對設(shè)計(jì)能力進(jìn)行權(quán)衡。

三種接收結(jié)構(gòu)相應(yīng)的WiMax及其數(shù)字基帶處理部分的模塊數(shù)簡單對比如下表所示,這里忽略了一些次要模塊和一些非收發(fā)通路的一些模塊。

這里,空白欄并不完全表示不需要該模塊,而是根據(jù)具體設(shè)計(jì)指標(biāo)確定。另外,在對于QAM64和QAM16調(diào)制中由相位失衡造成的誤差矢量幅度性能差異比較,數(shù)字中頻結(jié)構(gòu)較其余兩種有微弱優(yōu)勢;在QPSK調(diào)制方式下,數(shù)字中頻結(jié)構(gòu)僅在增益失衡較大時略有劣勢??傮w而言,在WiMax的這三種調(diào)制方式下,三種接收結(jié)構(gòu)中由相位失衡造成的誤差矢量幅度性能差異極小。

給出了幾種WiMax芯片的性能參數(shù),可以看出在這些芯片中,零中頻結(jié)構(gòu)較為普遍。

這里,空白欄并不完全表示不需要該模塊,而是根據(jù)具體設(shè)計(jì)指標(biāo)確定。另外,在對于QAM64和QAM16調(diào)制中由相位失衡造成的誤差矢量幅度性能差異比較,數(shù)字中頻結(jié)構(gòu)較其余兩種有微弱優(yōu)勢;在QPSK調(diào)制方式下,數(shù)字中頻結(jié)構(gòu)僅在增益失衡較大時略有劣勢??傮w而言,在WiMax的這三種調(diào)制方式下,三種接收結(jié)構(gòu)中由相位失衡造成的誤差矢量幅度性能差異極小[1]。


評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉