新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 真正軟件定義無線電的全新跨越

真正軟件定義無線電的全新跨越

作者: 時(shí)間:2015-06-03 來源:網(wǎng)絡(luò) 收藏

       鑒于的接收器僅僅由一個(gè)低噪聲放大器 (LNA) 和一個(gè)濾波器和ADC組成,隨著半導(dǎo)體行業(yè)在RF采樣模數(shù)轉(zhuǎn)換器 (ADC) 領(lǐng)域的進(jìn)步,那些預(yù)見到真正軟件定義 () 的系統(tǒng)工程師們借此得以實(shí)現(xiàn)了之前的設(shè)想。例如:在RF波段范圍處于700MHz到3.8GHz之間的蜂窩通信基礎(chǔ)設(shè)施中,這一愿望就將很快成為現(xiàn)實(shí)。這是因?yàn)殡S著越來越多功能越來越強(qiáng)大的設(shè)備的涌現(xiàn),能夠滿足用戶對更小外形尺寸、更低系統(tǒng)功耗和更高密度的要求,從而讓系統(tǒng)設(shè)計(jì)師的構(gòu)想成為可能。

本文引用地址:http://butianyuan.cn/article/275150.htm

  目前的高性能接收器主要使用一種外差架構(gòu),在這種架構(gòu)中,輸入信號(hào)的RF范圍在700MHz到數(shù)兆赫茲之間,隨后下行轉(zhuǎn)換為DC-500MHz之間的低中頻 (IF)。例如在某些諸如軍用雷達(dá)的應(yīng)用中,當(dāng)從10GHz(X波段)或者25至40GHz(Ka波段)范圍內(nèi)高很多的初級(jí)RF波段進(jìn)行下行轉(zhuǎn)換時(shí),次級(jí)IF就在1至3GHz范圍(S波段,L波段)。

  

傳統(tǒng)外差架構(gòu)與使用RF采樣ADC架構(gòu)之間的對比

 

  RF采樣ADC直接采集RF輸入,并因此取代了圖1中所示的整個(gè)下行轉(zhuǎn)換級(jí)。由于不使用RF本地振蕩器 (LO)、混音器和額外的增益與濾波級(jí),從而節(jié)省了印刷電路板 (PCB) 面積,并可以實(shí)現(xiàn)更加緊湊的系統(tǒng)設(shè)計(jì)。ADC的兆赫茲采樣時(shí)鐘,在輸入處于第二那奎斯特區(qū)間內(nèi)或者更高區(qū)間內(nèi)時(shí),將已采樣RF能量下行轉(zhuǎn)換為較低的數(shù)字中間頻率,從而成為高效LO。與外差架構(gòu)中的混音器LO相類似,ADC時(shí)鐘需要極佳的相位噪聲來防止來自較大信號(hào)的能量混合進(jìn)入小信號(hào)所處的同一頻率,因?yàn)檫@樣會(huì)降低接收器的靈敏度。

  

 

  傳統(tǒng)RF采樣ADC需要極寬的數(shù)字接口來輸出數(shù)據(jù)。由于低壓差分信令 (LVDS) 通常情況下的速度最高只有大約1Gbps,所以一個(gè)12位,4Gsps ADC將會(huì)需要大約49個(gè)差分對(其中的48個(gè)用于數(shù)據(jù),剩余的一個(gè)用于時(shí)鐘)。這就要求足夠大的封裝尺寸,和在PCB上較大的走線面積。而例如ADC12J4000使用了一款10Gbps JESD204b接口,只用8個(gè)差分對即可傳送同樣的數(shù)據(jù)量—將所需的差分對數(shù)量減少了83%(圖2)。對于窄帶應(yīng)用來說,片上數(shù)字抽取濾波器 (DDC) 可實(shí)現(xiàn)片上芯片濾波,以進(jìn)一步減少數(shù)據(jù)流量和所需的信道數(shù)量。例如,一個(gè)帶寬為100MHz的信號(hào),只使用一條5Gbps的單信道即可以250Msps的速度進(jìn)行傳輸(具有IQ輸出的抽取因子32)。

  RF采樣ADC的信噪比 (SNR) 遠(yuǎn)遠(yuǎn)低于IF采樣ADC,然而動(dòng)態(tài)范圍并沒有變差。其原因是它們用過采樣來彌補(bǔ)了其中的差距,并且通過將每赫茲水平的SNR標(biāo)準(zhǔn)化實(shí)現(xiàn)了差不多的SNR。

  例如,信噪比為70dB SNR的14位,250Msps ADC的噪聲頻譜密度 (NSD) 為-151dBFS/Hz,而信噪比為55dB SNR的12位,4Gsps ADC的NSD為-148dBFS/Hz。它們之間的差異只有3dB。

  RF采樣ADC的優(yōu)勢

  RF采樣ADC有兩個(gè)明顯優(yōu)勢,一是將大量信號(hào)帶寬數(shù)字化,二是直接在RF上捕捉信號(hào),從而簡化了信號(hào)鏈。

  但它還有一個(gè)鮮少被提及的優(yōu)勢,即在所需信號(hào)波段遠(yuǎn)遠(yuǎn)小于采樣率時(shí),它能夠使用快速采樣率進(jìn)行頻率規(guī)劃。選擇一個(gè)至少比信號(hào)帶寬快5至10倍的采樣率可以使系統(tǒng)設(shè)計(jì)人員能夠規(guī)劃那些無法濾除的帶內(nèi)干擾源的負(fù)面影響,因此可實(shí)現(xiàn)更好的動(dòng)態(tài)范圍。

  

 

  與外差接收器正好相類似的是,ADC的無雜散動(dòng)態(tài)范圍 (SFDR) 性能限制了對低輸入信號(hào)的檢測功能(圖3)。所需帶寬內(nèi)的干擾源(或者是通信基礎(chǔ)設(shè)施中的攔截器)是無法濾除的。這就要求信號(hào)鏈降低增益來避免ADC飽和。信號(hào)鏈中減少的增益會(huì)削弱把小信號(hào)(例如,“有用信號(hào)B”)提升到ADC噪底以上的能力,因而不能進(jìn)行適當(dāng)?shù)臋z測。帶內(nèi)干擾源的諧波雜散還會(huì)落在有用信號(hào)的頂部,從而限制了接收器的靈敏度。這是軍用雷達(dá)(用來偵測小型物體),軟件定義和蜂窩基站中的一個(gè)關(guān)鍵要素。

  在過采樣配置中使用RF采樣ADC(諸如ADC12J4000)可以避免干擾源的限制諧波對小幅有用信號(hào)的阻斷。例如,200MHz的所需帶寬可在中央頻率為1.75GHz的RF上,以4Gsps的采樣率進(jìn)行采樣。前四個(gè)通常是高速ADC中最差的諧波(HD2,HD3,HD4和HD5),以及其他來自帶內(nèi)干擾源的交叉雜散就全都落在了波段之外(圖4)。

  ADC采樣率的加快也放寬了對為驅(qū)動(dòng)放大器所需的對抗混疊濾波器的要求。200MHz波段可以用500Msps ADC進(jìn)行采樣,但是將會(huì)需要非常精確的濾波器,這是因?yàn)橄乱粋€(gè)圖像只隔了50MHz(假定波段在那奎斯特區(qū)域的中心)。相反地,采樣率為4Gsps,以1.75GHz為中心的同一波段,就只需要和針對最近距離大約為300MHz的圖像(混疊 = 2.15-2.35GHz,交叉圖像 = 1150-1350MHz)同樣的波段外濾波器衰減技術(shù)規(guī)格,對濾波器的要求就放寬了許多。

  在成功使用頻率規(guī)劃后,SFDR性能只受到較高階諧波(不是HD2-5中的任何一個(gè))的限制。可以通過采用小信號(hào)抖動(dòng)來進(jìn)一步改進(jìn)這些較高階雜散。兆采樣RF ADC的高采樣率提供很多“未占用”頻譜,可將波段受限抖動(dòng)放置在其中,而又不會(huì)影響到任何有用信號(hào)(圖5)。

  

抖動(dòng)是軟件定義無線電中的常用技術(shù)

 

  抖動(dòng)是軟件定義中的常用技術(shù),并且可將雜散底噪改進(jìn)5至10dB。

  總結(jié)

  目前諸如ADC12J4000的RF采樣ADC可以大大提高超寬波段接收器的使用和性能。其高輸入帶寬在RF上直接實(shí)現(xiàn)了信號(hào)的數(shù)字化,與此同時(shí),快速采樣率又降低了濾波器要求,并實(shí)現(xiàn)了帶內(nèi)干擾器諧波周圍的頻率規(guī)劃。通過添加片上數(shù)字濾波器來大大降低數(shù)字接口數(shù)據(jù)流量,從而使ADC12J4000成為小型、低功耗、下一代數(shù)字無線電的完美選擇 。

  作者:Tommy Neu,德州儀器 (TI)系統(tǒng)工程師

濾波器相關(guān)文章:濾波器原理


濾波器相關(guān)文章:濾波器原理


模數(shù)轉(zhuǎn)換器相關(guān)文章:模數(shù)轉(zhuǎn)換器工作原理


數(shù)字濾波器相關(guān)文章:數(shù)字濾波器原理


關(guān)鍵詞: 無線電 SDR

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉