新聞中心

EEPW首頁 > 電源與新能源 > 學(xué)習(xí)方法與實(shí)踐 > 大功率智能充電器的研究與設(shè)計(jì)

大功率智能充電器的研究與設(shè)計(jì)

作者:傅胤榮 胡義華 潘永雄 時(shí)間:2008-01-30 來源:中國(guó)電源網(wǎng) 收藏

  0 引言

本文引用地址:http://www.butianyuan.cn/article/78246.htm

  由于鉛酸蓄電池維護(hù)簡(jiǎn)單、價(jià)格低廉、供電可靠、使用壽命長(zhǎng),廣泛作為汽車、飛機(jī)、輪船等機(jī)動(dòng)車輛或發(fā)電機(jī)組的啟動(dòng)電源,也在各類需要不間斷供電的電子設(shè)備和便攜式儀器儀表中用作一些電器及控制回路的工作電源。隨著經(jīng)濟(jì)的發(fā)展,大容量蓄電池的應(yīng)用迅速增加,人們希望能快捷、安全地對(duì)蓄電池進(jìn)行充電,而現(xiàn)有市場(chǎng)銷售的充電器充電電流多為20A。為了滿足人們對(duì)大功率充電器的需求,設(shè)計(jì)了一款基于LPC933 充電電流50A、充電功率740W、功能完善、可擴(kuò)充的。

  1 充電器原理與設(shè)計(jì)

  1.1 總體硬件設(shè)計(jì)

  由于充電對(duì)象是鉛酸蓄電池,設(shè)計(jì)中采用電流、電壓負(fù)反饋的方法來達(dá)到恒流、恒壓充電的目的,并對(duì)充電過程各種工作參量進(jìn)行實(shí)時(shí)監(jiān)測(cè)及智能多段式充電策略的精確控制,應(yīng)用了LPC933單片機(jī)及相應(yīng)的控制電路。充電器硬件原理圖如圖1 所示。

  圖1 充電器原理圖

  充電器電路主要包括主電路、信號(hào)控制兩部分。主電路部分由橋式整流、PWM波形產(chǎn)生和直流濾波等組成。單相電源為220 V交流電時(shí),開關(guān)K1閉和,單相電源為110 V時(shí),開關(guān)K1斷開,經(jīng)全橋整流為300 V左
右的直流電,由大電容進(jìn)行低頻濾波穩(wěn)壓,圓只MOS 器件S1、S2 組成半橋逆變器。PWM波形產(chǎn)生部分由SG3525根據(jù)反饋電壓產(chǎn)生,通過給MOS 管S1、S2 加高頻方波控制信號(hào),使S1和S2 周期性地導(dǎo)通,可得到脈寬可調(diào)的高頻交流電,經(jīng)高頻變壓器耦合到副邊,再經(jīng)整流管D2和D3整流,L1 和C4濾波,在輸出側(cè)得到低紋波直流電壓。顯示模塊是用來顯示電池的當(dāng)前電壓與充電電流,顯示狀態(tài)由面板上實(shí)現(xiàn)按鈕啟動(dòng)。

  1.2 電路功能設(shè)計(jì)與分析

  1.2.1 PWM 寬度設(shè)置

  脈寬調(diào)制控制電路采用開關(guān)電源專用集成芯片SG3525,SG3525有兩路驅(qū)動(dòng)輸出,OUT-A 與OUT-B 反向輸出,可設(shè)置死區(qū)時(shí)間。控制過程主要是移動(dòng)調(diào)節(jié)導(dǎo)通的占空比來調(diào)節(jié)輸出功率。移相PWM的相移控制是通過誤差放大器來實(shí)現(xiàn)的,誤差放大器的同相端E/A+(腳2)接由單片機(jī)控制輸出的電壓信號(hào)。反相端E/A-(腳1)接主電路輸出電流或電壓的反饋信號(hào),電流和電壓負(fù)反饋信號(hào)之間的切換由肖特基二極管D1 的導(dǎo)通截止實(shí)現(xiàn)。反饋信號(hào)和標(biāo)準(zhǔn)電位比較,差值經(jīng)放大輸出,送至移相脈寬控制器,控制OUT-A與OUT-B 之間的相位,最終調(diào)整波形占空比,使電壓和充電電流穩(wěn)定在預(yù)定值上。

  1.2.2 電流采樣

  電流采樣是大電流充電器的關(guān)鍵技術(shù)之一。通常采用電阻采樣,但在50A 以上的大電流電路中是難于適用的。為此,設(shè)計(jì)了在高頻變壓器的初級(jí)線圈處增加環(huán)形電流互感器,匝數(shù)比為1:50,不僅達(dá)到精確電流采樣的作用,還使采樣功耗控制在0.5W以內(nèi)。

  1.2.3 限流保護(hù)措施

  正常情況下,開關(guān)電源應(yīng)工作在額定輸出功率范圍之內(nèi),避免電源工作在超出正常輸出狀態(tài),但在實(shí)際工作中很難預(yù)測(cè),故電路將高頻變壓器輸出的電流經(jīng)電流互感器耦合輸出,再經(jīng)二極管整流,電容濾波及電阻分壓后,與比較器的同相端電壓進(jìn)行比較,當(dāng)輸出電壓過高時(shí),SG3525停止輸出方波驅(qū)動(dòng)信號(hào),從而保護(hù)電路。

  1.2.4 散熱問題

  研發(fā)初期發(fā)現(xiàn),逆變器主要部件兩個(gè)大功率開關(guān)管S1 和S2 及直流輸出部分的全波整流管D2和D3,在充電電流大于30粵時(shí)出現(xiàn)過熱問題,無法滿足老化要求。經(jīng)過硬件反復(fù)調(diào)試發(fā)現(xiàn),從以下幾個(gè)方面可以有效解決過熱的問題。

 ?。?)增加交流共模濾波電感,調(diào)試發(fā)現(xiàn)電網(wǎng)的高頻干擾信號(hào)是造成逆變器開關(guān)管溫升異常的重要原因;

  (2)在直流輸出端,增加濾波電感后,發(fā)現(xiàn)有效地減輕了開關(guān)管和全波整流管的負(fù)荷;

 ?。?)增加散熱面積。使開關(guān)管金屬面通過導(dǎo)熱膠片壓在金屬外殼上;

 ?。?)風(fēng)冷。

  經(jīng)過以上4 個(gè)方面的改進(jìn),測(cè)試證明充電電流達(dá)到60粵時(shí)能持續(xù)工作4h 以上,完全滿足老化的設(shè)計(jì)要求。

  2 充電控制技術(shù)

  2.1 充電算法

  充電控制技術(shù)是系統(tǒng)中軟件設(shè)計(jì)的核心部分。根據(jù)充電電池的原理,同種工藝的電池理想的充電曲線大致相似,而具體的電壓數(shù)值有所差別的特點(diǎn),應(yīng)用信息技術(shù)進(jìn)行控制,可達(dá)到最佳充電效果。為實(shí)現(xiàn)大電流充電,又要保護(hù)電池,蓄電池采用圖2 所示的充電方式,充電階段可以分成4 個(gè)階段。

  圖2 充電曲線圖

    2.1.1 涓流短時(shí)充電

  充電器開始工作后,首先檢測(cè)蓄電池的電池電壓,若電池電壓低于9.5V,充電器不工作。若電池電壓大于怨.5V而小于10.5V,說明蓄電池曾經(jīng)過度放電,為避免對(duì)蓄電池充電電流過大,造成熱失控,微處理器通過監(jiān)測(cè)蓄電池的電壓,對(duì)蓄電池實(shí)行穩(wěn)定小電流涓流充電,激活蓄電池。在涓流充電階段,電池電壓開始上升,當(dāng)電池電壓上升到能接受大電流充電的閾值時(shí),則轉(zhuǎn)入恒流充電階段。

  2.1.2 恒流充電

  該階段為大電流恒流充電,電流值為I2 ,因蓄電池容量而異,一般為I2 越0.1C(C 為蓄電池組的容量),持續(xù)時(shí)間為T2,在恒流充電狀態(tài)下,不斷檢測(cè)電池端電壓,當(dāng)電池電壓達(dá)到飽和電壓時(shí),恒流充電狀態(tài)終止。

  2.1.3 恒壓充電


  該階段為恒壓充電,電壓值為14.7V,它是蓄電池節(jié)數(shù)與蓄電池溫度的函數(shù),這時(shí)充電電流逐漸減小,恒壓充電時(shí),保持充電電壓不變。充電電流不斷下降,當(dāng)充電電流下降到恒流狀態(tài)下充電電流的1/10 時(shí),終止恒壓充電。

  2.1.4浮充電

  該階段主要用來補(bǔ)充蓄電池自放電所消耗的能量,電池電壓達(dá)到13.8V時(shí),此時(shí)標(biāo)志著充電過程結(jié)束。

  2.2 充電終止控制

  電池在充滿電后,如果不及時(shí)停止充電,電池的溫度將迅速上升。溫度的升高將加速蓄電池板柵腐蝕速度及電解液的分解,從而縮短電池壽命、容量下降。為了保證電池充足電又不過充電,采用具有定時(shí)控制、溫度控制和電池電壓、電流控制功能的綜合控制法。

  3 軟件設(shè)計(jì)

  因?yàn)椴煌N類的電池有不同的充電特性,所以充電器要能根據(jù)具體電池的類型,控制不同的充電狀態(tài)。在充電的關(guān)鍵階段采用了模糊控制方法,這些通過程序控制實(shí)現(xiàn)。充電主程序流程圖如圖猿所示。程序具體實(shí)現(xiàn)過程為:?jiǎn)纹瑱C(jī)首先進(jìn)行初始化,然后對(duì)蓄電池的電壓進(jìn)行測(cè)量,產(chǎn)生電壓偏差和變化率信號(hào),偏差及變化率信號(hào)進(jìn)入模糊控制器后,經(jīng)過模糊處理,輸出電流信息,從而適時(shí)和正確地控制充電方式和過程。參照充電曲線圖(圖2),在充電過程中不斷檢測(cè)電池是否充滿,當(dāng)檢測(cè)己經(jīng)充滿時(shí),提示用戶電池已充足,充電器自動(dòng)進(jìn)入浮充維護(hù)狀態(tài)。若在充/供電過程時(shí)出現(xiàn)故障,LPC933 微控制器會(huì)及時(shí)停止輸出并報(bào)故障。模糊處理和終止條件的判決為整個(gè)的關(guān)鍵,關(guān)系著充電器性能的好壞。

  圖3 充電主程序流程圖

  4 充電器的硬件設(shè)計(jì)特點(diǎn)

  根據(jù)生產(chǎn)商的銷售市場(chǎng)主要面對(duì)歐美市場(chǎng)同時(shí)兼顧國(guó)內(nèi)的特點(diǎn),硬件設(shè)計(jì)采用跳線的方式使產(chǎn)品可以適應(yīng)110~220災(zāi)的電源和12~36V的電池。110/220V的交換開關(guān)K1(如圖1所示),可以實(shí)現(xiàn)110V的倍壓整流和220V的全波整流的切換。

  直流輸出電路有可擴(kuò)展端口,可以通過串、并聯(lián)的方式,生產(chǎn)出不同規(guī)格的充電器??煽氐某潆婋娏?,通過調(diào)節(jié)可調(diào)電阻RW1(如圖1 所示),調(diào)高或降低負(fù)反饋的電壓值,可以實(shí)現(xiàn)充電電流在園耀50 A范圍內(nèi)的任意設(shè)定。

  5 結(jié)語

  隨著信息產(chǎn)業(yè)的迅猛發(fā)展以及移動(dòng)電話、便攜式計(jì)算機(jī)、電動(dòng)自行車等高附加值產(chǎn)品的普及,越來越多的產(chǎn)品需要充電的同時(shí),也要求盡可能地延長(zhǎng)電池的壽命。Power Smart公司根據(jù)多次試驗(yàn)結(jié)果得出結(jié)論:若采用合適的充電方式,電池的使用壽命大約可提高30%。大量的實(shí)驗(yàn)表明:采用以LPC933 和SG3525 為核心的控制電路設(shè)計(jì)的智能充電器,能夠?qū)崿F(xiàn)對(duì)鉛酸電池進(jìn)行大電流的充電,并能夠根據(jù)充電過程自動(dòng)調(diào)整控制參數(shù)以及故障自診斷,可以實(shí)現(xiàn)充電過程的無人值守,延長(zhǎng)電池的使用壽命。這種技術(shù)推廣到市場(chǎng),必將占有一定的市場(chǎng)份額,從而帶來的社會(huì)效益和經(jīng)濟(jì)效益。

  參考文獻(xiàn):

       [1] 王鴻麟,景占榮. 通信基礎(chǔ)電源(第二版)[M]. 西安電子科技大學(xué)出版社, 2001.
       [2] 黃正佳,袁永斌. 智能電池模塊[J]. 電源技術(shù), 2002,26(5):379-382.
       [3] 查全性. 試論高比性能電池進(jìn)展物理[Z]. 1998.
       [4] 張文修. 模糊數(shù)學(xué)基礎(chǔ)[M]. 西安:西安交通大學(xué)出版社, 1984.
       [5] 章衛(wèi)國(guó),楊向忠. 模糊控制理論與應(yīng)用[M]. 西安:西北工業(yè)大學(xué)出版社, 1999.
       [6] 劉增良.模糊技術(shù)與應(yīng)用選編(3)[M]. 北京:北京航空航天出版社, 1998.
       [7] 何新貴.模糊知識(shí)處理的理論與技術(shù)[M]. 北京:國(guó)防工業(yè)出版社, 1998.
       [8] 余永權(quán).模糊控制技術(shù)與模糊家用電器[M]. 北京:北京航空航天大學(xué)出版社, 2000.
       [9] Cygnal Integrated Products Inc. C8051F單片機(jī)應(yīng)用解析[M]. 北京:北京航空航天大學(xué)出版社, 2002.

倍壓整流電路相關(guān)文章:倍壓整流電路原理




關(guān)鍵詞: 智能充電器

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉