新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > 一種基于SoC應(yīng)用的Rail-to-Rail運算放大器IP核

一種基于SoC應(yīng)用的Rail-to-Rail運算放大器IP核

作者: 時間:2009-01-08 來源:EDN 收藏

  片上系統(tǒng)()是在單一芯片上實現(xiàn)信號采集、轉(zhuǎn)換、存儲、處理和I/ O接口等多種功能,具有面積小、功耗低、設(shè)計時間短、成本低和高性能指標(biāo)等特點. SoC設(shè)計的核心是 核設(shè)計. 在SoC的模擬集成電路設(shè)計中,使用簡單的電路結(jié)構(gòu)來實現(xiàn)高性能成為模擬電路設(shè)計的趨勢. 是模擬電路最重要的電路單元,但是隨著電源電壓的不斷降低,常規(guī)設(shè)計的運放受閾值電壓及飽和電壓降的影響而導(dǎo)致運放的輸入輸出動態(tài)范圍不斷減小,影響后級電路的正常工作. 為了增大運算放大器的動態(tài)范圍,出現(xiàn)了Rail-to-Rail 結(jié)構(gòu).

本文引用地址:http://butianyuan.cn/article/90662.htm

  通常的兩級Rail-to-Rail 運放包含復(fù)雜的AB類輸出級,它占用很大的芯片面積. 而且AB類控制會增加運放的噪聲和失調(diào)電壓.雖然有的運放克服了上述問題. 然而, 由于使用了復(fù)雜的浮地電流源來偏置求和電路和AB 類輸出級,輸入級跨導(dǎo)隨共模電壓發(fā)生很大的變化,使得頻率補償特性難以達到最佳. 此外,輸出晶體管的瞬態(tài)電流隨電流電壓變化 .

  筆者提出了一種基于SoC應(yīng)用的5V Rail-to-Rail 運算放大器,其中輸入級采用互補差分對輸入. 運放的輸出級不同于以往復(fù)雜的AB類輸出級,也不同于使用浮地電流源來偏置求和電路和AB 類輸出級的電路,而是采用分壓電路來實現(xiàn). 整個運放的電路結(jié)構(gòu)簡單有效,非常適合應(yīng)用.

  1  電路結(jié)構(gòu)

  1.1  輸入級

  通常,運算放大器的輸入級均采用匹配性能好,失調(diào)、溫漂很小的差分放大電路. 為了使運放的共模輸入在整個電源范圍內(nèi)變化時電路都能正常工作,采用NMOS管和PMOS管并聯(lián)的互補差分輸入對結(jié)構(gòu)來實現(xiàn)輸入級的Rail-to-Rail.基本的Rail-to-Rail輸入級結(jié)構(gòu)如圖1 所示,M1-M2 為NMOS 差分輸入對,M3-M4 為PMOS 差分輸入對.

基本的Rail-to-Rail 輸入級結(jié)構(gòu)

圖1  基本的Rail-to-Rail 輸入級結(jié)構(gòu)

  Rail-to-Rail 輸入級的工作原理如下,其共模輸入電壓范圍如圖2所示.

Rail-to-Rail運算放大器共模輸入電壓范圍

圖2  Rail-to-Rail運算放大器共模輸入電壓范圍

  PMOS差分輸入對共模輸入電壓范圍為VSS < VCM < VDD - Vdsat -Vgsp , NMOS差分輸入對共模輸入電壓范圍為VSS + Vgsn + Vdsat < VCM < VDD,其中VCM為共模輸入電壓, Vgsp為p管的柵源電壓, Vdsat為電流源兩端電壓, VDD為正電源, VSS為負電源, Vgsn為n管的柵源電壓.輸入級所需要的最小電源電壓為Vsup ,min = Vgsp + Vgsn + 2Vdsat . 當(dāng)電源電壓大于Vsup ,min 時,輸入級能夠正常工作,總的共模輸入范圍為VSS < VCM < VDD , 從而實現(xiàn)了輸入級的Rail-to-Rail .所設(shè)計的運放輸入級工作在亞閾值區(qū),根據(jù)輸入共模電壓的不同,輸入級電路可分為3 個工作狀態(tài) :

  當(dāng)共模電壓接近VDD 時,NMOS差分輸入對處于放大工作狀態(tài),輸入級跨導(dǎo)為gm = gmn = In/( nnVth) ;當(dāng)共模輸入電壓接近VSS時,PMOS 差分輸入對處于放大工作狀態(tài),輸入級跨導(dǎo)為gm = gmp = Ip/ ( npVth) ; 當(dāng)共模電壓處于中間值時,NMOS輸入對和PMOS輸入對均處于放大工作狀態(tài),輸入級跨導(dǎo)為gm = gmp + gmn = Ip/( npVth) + In/ (nnVth) . 其中In和Ip分別為NMOS和PMOS輸入管的漏級電流, np和nn分別為NMOS和PMOS輸入管的弱反型斜率因子, Vth是熱電勢kT/q , 為26mV.

  1.2  輸出級

  整個運算放大器采用對稱結(jié)構(gòu)(如圖3) ,并且運用分壓電路進行求和. M5 , M20 , M18 和M8 構(gòu)成分壓支路. 分壓支路中M5 和M20 與M8和M18的阻抗變化機理相同,因此僅描述M5 和M20 的阻抗變化. 電路如圖4 示,圖中A 點電壓恒定, M6 工作在飽和區(qū). 根據(jù)輸出電阻公式

r0 = 1/ (λID)  , (1)

  ( λ為溝道長度調(diào)制系數(shù)) ,當(dāng)輸入電壓變化時, M1和M2 的漏級電流變化,圖中B 點電壓會發(fā)生變化, 但因M19引入一個負反饋, 使得B點電壓恒定. 根據(jù)飽和區(qū)

公式

  線性區(qū)

公式

  由式(1)~(3)知, VGS的變化使得M5和M6的漏級電流變化,導(dǎo)致阻抗變化和C點電壓變化. C點電壓變化使得M20在線性區(qū)和飽和區(qū)之間變化,因此M20 的阻抗發(fā)生很大變化. 同理,輸入電壓變化時,M8和M18的阻抗發(fā)生變化,變化趨勢與M5和M20相反. 因C點、F點電位分別接近VDD和GND,M24的柵壓在VDD和GND之間變化. 運放的第2級放大采用簡單的共源級放大,以提供最大的輸出擺幅. 為使放大器有良好的頻率響應(yīng)特性,采用了Miller電容補償技術(shù) .

 

Rail-to-Rail 運算放大器結(jié)構(gòu)

圖3  Rail-to-Rail 運算放大器結(jié)構(gòu)

阻抗變化機理圖

圖4  阻抗變化機理圖



關(guān)鍵詞: SOC IP

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉