智能門禁報(bào)警系統(tǒng)的仿真應(yīng)用
2、b1=b3=4;b5=3;b8=2;b2=b4=b6=b7=b9=1
3、b1=b3=4;b5=2;b8=0;b2=b4=b6=b7=b9=1
4、b1=b3=4;b5=3;b8=0;b2=b4=b6=b7=b9=1
仿真實(shí)驗(yàn)結(jié)果表明,通過子圖像權(quán)值的分配,突出人臉骨骼特征,識(shí)別效果良好(見表1和表2),模擬了人類識(shí)別人臉時(shí)主要依據(jù)人臉骨骼等穩(wěn)定特征,而對(duì)嘴部和皮膚折皺等表情變化部分特征給予弱化或剔除這一特點(diǎn)。通過對(duì)人臉圖像進(jìn)行分塊,降低圖像維度,減小了計(jì)算量。
結(jié)語
本文研究了在智能門禁報(bào)警系統(tǒng)中,人臉識(shí)別結(jié)合ID技術(shù)的仿真應(yīng)用問題,驗(yàn)證了基于RBF網(wǎng)絡(luò)和貝葉斯估計(jì)人臉識(shí)別方法在提高安防報(bào)警系統(tǒng)的快速、準(zhǔn)確和安全性方面的有效性,提高了門禁系統(tǒng)的安全性和防欺詐性,與ID技術(shù)相結(jié)合,實(shí)現(xiàn)了快速識(shí)別。將分塊后對(duì)人臉圖像奇異值分解壓縮,提高傳輸效率,節(jié)省存儲(chǔ)空間,改善局域網(wǎng)的應(yīng)用環(huán)境。在本文所研究的算法基礎(chǔ)上,使用MATLAB語言開發(fā)了人臉圖像仿真識(shí)別系統(tǒng)的管理操作界面,基于Yale標(biāo)準(zhǔn)人臉圖像庫,用戶可以非常方便地對(duì)人臉圖像仿真識(shí)別系統(tǒng)進(jìn)行操作使用,對(duì)所研究的人臉識(shí)別方法進(jìn)行仿真測(cè)試與對(duì)比分析,系統(tǒng)運(yùn)行結(jié)果非常直觀地顯示出來。
參考文獻(xiàn):
[1] 陳彪, 吳成東, 鄭君剛. 基于RBF網(wǎng)絡(luò)和貝葉斯分類器融合的人臉識(shí)別方法[J]. 電子產(chǎn)品世界, 2009(2):P41-44.
[2] Hu J S, Su T M, Jeng S C. Robust Background Subtraction with Shadow and Highlight [C]. Removal for Indoor Surveillance Intelligent Robots and System, 2006 IEEE/RSJ International Conference on Oct. 2006: 4545-4550
[3] Lee J, Rajauria P, Subodh K. A model-based conceptual clustering of moving objects in video surveillance [J]. Univ. of Bridgeport Multimedia Content Access: Algorithms and Systems. 2007(1)
[4] 洪子泉, 楊靜宇. 基于奇異值特征和統(tǒng)計(jì)模型的人臉識(shí)別算法[J]. 計(jì)算機(jī)研究與發(fā)展,1994, 31(3): 60-65
[5] Cucchiara R, Grana C, Prati A. Computer vision system for in-house video surveillance vision[J]. Image and Signal Processing, IEEE Proceedings, 2005,152: 242-249.
[6] Desurmont X, Delaigle J F, Bastide A. A generic flexible and robust approach for intelligent real-time video-surveillance system[J]. Real-Time Imaging VIII, 2004: 134-141
[7] Oyang Y J, Hwang S C, Ou Y Y, et al. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Transactions on Neural Networks. 2005,16(1):225-236
[8] Moghaddam B, Jebara T, Pentland A. Bayesian Face Recognition, Pattern Recognition 2000,33:1771-1782
[9] Er M J, Wu S Q, Lu J W, et al. Face recognition with radial basis function (RBF) neural networks Neural Networks, IEEE Transactions 2002,13(3): 697-710
[10] Yang F, Paindavoine M. Implementation of an RBF Neural Network on Embedded Systems: Real-Time Face Tracking and Identity Verification [J]. IEEE transaction. on Neural Networks, 2003, 14(5): 1162-1175
評(píng)論