博客專欄

EEPW首頁(yè) > 博客 > 哈爾濱理工大學(xué)蔡蔚教授團(tuán)隊(duì)研究成果:SiC 功率模塊封裝技術(shù)及展望

哈爾濱理工大學(xué)蔡蔚教授團(tuán)隊(duì)研究成果:SiC 功率模塊封裝技術(shù)及展望

發(fā)布人:旺材芯片 時(shí)間:2022-05-18 來(lái)源:工程師 發(fā)布文章
碳化硅模塊封裝的主要問(wèn)題

近幾十年來(lái),以新發(fā)展起來(lái)的第3代寬禁帶功率半導(dǎo)體材料碳化硅(SiC)為基礎(chǔ)的功率半導(dǎo)體器件,憑借其優(yōu)異的性能備受人們關(guān)注。SiC與第1代半導(dǎo)體材料硅(Si)、鍺(Ge)和第2代半導(dǎo)體材料砷化鎵(GaAs)、磷化鎵(GaP)、GaAsAl、GaAsP等化合物相比,其禁帶寬度更寬,耐高溫特性更強(qiáng),開(kāi)關(guān)頻率更高,損耗更低,穩(wěn)定性更好,被廣泛應(yīng)用于替代硅基材料或硅基材料難以適應(yīng)的應(yīng)用場(chǎng)合。
然而,現(xiàn)有的封裝技術(shù)大多都是沿用Si基器件的類似封裝,要充分發(fā)揮碳化硅的以上性能還有諸多關(guān)鍵問(wèn)題亟待解決。
由于SiC器件的高頻特性,結(jié)電容小,柵極電荷低,開(kāi)關(guān)速度快,開(kāi)關(guān)過(guò)程中的電壓和電流的變化率極大,寄生電感在極大的di/dt下,極易產(chǎn)生電壓過(guò)沖和振蕩現(xiàn)象,造成器件電壓應(yīng)力、損耗的增加和電磁干擾問(wèn)題。
關(guān)于在高溫、嚴(yán)寒等極端條件下可靠性急劇下降等問(wèn)題,急需尋求適應(yīng)不同工況的連接材料和封裝工藝,滿足不同封裝形式的熱特性要求。
針對(duì)模塊內(nèi)部互擾、多面散熱、大容量串并聯(lián)、制造成本和難度等問(wèn)題,適當(dāng)減少熱界面層數(shù),縮減模塊體積,提升功率密度和多功能集成是未來(lái)的趨勢(shì)。采用先進(jìn)散熱技術(shù)、加壓燒結(jié)工藝,設(shè)計(jì)功率半導(dǎo)體芯片一體化,優(yōu)化多芯片布局等方式,起著一定的關(guān)鍵作用。
國(guó)際上的主要解決方案針對(duì)上述問(wèn)題,國(guó)內(nèi)外專家及其團(tuán)隊(duì)研發(fā)不同封裝技術(shù),用于提升模塊性能,降低雜散參數(shù),增強(qiáng)高溫可靠性。
美國(guó)Wolfspeed公司研發(fā)出結(jié)溫超過(guò)225 ℃的高溫SiC功率模塊,并將功率模塊的寄生電感降低到5 nH。美國(guó)GE公司的全球研究中心設(shè)計(jì)了一種疊層母線結(jié)構(gòu),構(gòu)造與模塊重疊并聯(lián)的傳導(dǎo)路徑,使回路電感降至4.5 nH。德國(guó)賽米控公司采用納米銀燒結(jié)和SKiN布線技術(shù),研發(fā)出SiC功率模塊的高溫、低感封裝方法。德國(guó)英飛凌公司采用壓接連接技術(shù),研制出高壓SiC功率模塊。德國(guó)Fraunholfer研究所采用3D集成技術(shù)研制出高溫(200 ℃)、低感(≤1 nH) SiC功率模塊。瑞士ABB公司采用3D封裝布局,研制出大功率低感SiC功率模塊。瑞士ETH采用緊湊化設(shè)計(jì),優(yōu)化功率回路,研制出寄生電感≤1 nH的低電感SiC功率模塊[14]。日本尼桑公司基于雙層直接敷銅板(direct bonded copper, DBC)封裝,研制出低感SiC功率模塊,應(yīng)用于車用電機(jī)控制器。
上述碳化硅的優(yōu)良特性,只有通過(guò)模塊封裝布局的可靠性設(shè)計(jì)、封裝材料的選型、參數(shù)的優(yōu)化、信號(hào)的高效和封裝工藝的改善,才能得以充分發(fā)揮。
本文提出的解決方案討論本文中重點(diǎn)聚焦典型封裝結(jié)構(gòu)下,低雜散參數(shù)、雙面散熱模塊下緩沖層的影響和功率模塊失效機(jī)理等關(guān)鍵技術(shù)內(nèi)容的梳理總結(jié),最后展望了未來(lái)加壓燒結(jié)封裝技術(shù)和材料的發(fā)展。

1 模塊封裝形式


隨著新興戰(zhàn)略產(chǎn)業(yè)的發(fā)展對(duì)第3代寬禁帶功率半導(dǎo)體碳化硅材料和芯片的應(yīng)用需求,國(guó)內(nèi)外模塊封裝技術(shù)也得到迅速發(fā)展,追求低雜散參數(shù)、小尺寸的封裝技術(shù)成為封裝的密切關(guān)注點(diǎn),國(guó)內(nèi)外科研團(tuán)隊(duì)和半導(dǎo)體產(chǎn)業(yè)設(shè)計(jì)了結(jié)構(gòu)各異的高性能功率模塊,提升了SiC基控制器的性能。
(1) 傳統(tǒng)封裝:Wolfspeed、Rohm和Semikron等制造商大多延用傳統(tǒng)Si基封裝方式,功率等級(jí)較低,含有金屬鍵合線,雜散電感較大。
(2) DBC+PCB混合封裝:Cha等和Seal等把DBC和PCB板進(jìn)行整合,通過(guò)鍵合線連接芯片和PCB板,研創(chuàng)出DBC+PCB混合封裝。實(shí)現(xiàn)了直接在PCB層間控制換流回路,縮減換流路徑來(lái)減小寄生電感。
(3) SKiN封裝:德國(guó)Semikron公司采用納米銀燒結(jié)和SKiN布線技術(shù),采用柔性 PCB板取代鍵合線實(shí)現(xiàn)芯片的上下表面電氣連接,模塊內(nèi)部回路寄生電感僅為1.5 nH。
(4) 平面互連封裝:通過(guò)消除金屬鍵合線,將電流回路從DBC板平面布局拓展到芯片上下平面的層間布局,顯著減小了回路面積,降低了雜散電感參數(shù),如Silicon Power公司采用端子直連(DLB)、IR的Cu-Clip IGBT和Siemens的SiPLIT技術(shù)等。
(5) 雙面焊接(燒結(jié))封裝:在功率芯片兩側(cè)焊接DBC散熱基板,為芯片上下表面提供散熱通道;或者使用銀燒結(jié)技術(shù)將芯片一面焊接DBC,另一面連接鋁片。雙面散熱既能優(yōu)化基板邊緣場(chǎng)強(qiáng),還能夠降低電磁干擾(EMI),減小橋臂中點(diǎn)的對(duì)地寄生電容,使其具有損耗低、熱性能好、制造成本低等優(yōu)點(diǎn)。
橡樹嶺實(shí)驗(yàn)室、中車時(shí)代電氣、天津大學(xué)和CPES等可以將寄生電感降低至5 nH。同時(shí),銅燒結(jié)作為一種更低成本的芯片連接方案更被視為是未來(lái)幾年的研究熱點(diǎn)。目前雙面散熱技術(shù)主要應(yīng)用在新能源電動(dòng)車內(nèi)部模塊。
(6) 壓接封裝:壓接型器件各層組件界面間依靠壓力接觸實(shí)現(xiàn)電熱傳導(dǎo),分為凸臺(tái)式和彈簧式兩類。與焊接型器件相比,壓接封裝結(jié)構(gòu)模塊具有高功率密度、雙面散熱、低通態(tài)損耗、抗沖擊能力強(qiáng)、耐失效短路和易于串聯(lián)等優(yōu)點(diǎn),而且采用數(shù)量較少的壓接型模塊便可滿足換流時(shí)電壓等級(jí)和容量需求,但由于密封等要求多采用LTCC陶瓷設(shè)計(jì),成本較高,且壓接封裝結(jié)構(gòu)復(fù)雜,目前只用于高壓模塊的制造,具有一定的應(yīng)用市場(chǎng)。但離汽車領(lǐng)域的實(shí)際應(yīng)用尚有一定的差距。
(7) 三維(3D)封裝:Tokuyama等和Herbsommer等將SiC模塊的上橋臂直接疊加在下橋臂上,由于SiC模塊的結(jié)構(gòu)是垂直型的,可以大幅縮短換流回路的物理長(zhǎng)度,以進(jìn)一步減少與di/dt相關(guān)的問(wèn)題。目前該封裝技術(shù)最大的優(yōu)勢(shì)是可以將模塊寄生電感降至1 nH以下。還有將電壓波動(dòng)最大的端子放置在三維夾心結(jié)構(gòu)的中間,使端子與散熱器之間的寄生電容急劇降低,進(jìn)而抑制了電磁干擾噪聲。

圖片

圖1   典型封裝結(jié)構(gòu)剖面圖

2 低雜散電感封裝技術(shù)


目前,引線鍵合分為線材和帶材兩類,根據(jù)金屬特性不同,主要有Al、Cu和Au。鋁線是最基本的鍵合方式,鋁帶通流能力更強(qiáng),強(qiáng)度更高,Au由于其成本較高,應(yīng)用相對(duì)較少,銅帶是未來(lái)的趨勢(shì)。其中柔性箔、鋁涂層銅線和頂部DBC-銅夾技術(shù)也具有一定的應(yīng)用市場(chǎng)。
對(duì)于金屬引線鍵合式模塊的3維封裝結(jié)構(gòu),通過(guò)降維處理,可以極大簡(jiǎn)化功率模塊結(jié)構(gòu)的仿真時(shí)間,將三維立體結(jié)構(gòu)轉(zhuǎn)換為2D平面結(jié)構(gòu)的研究為整體功率模塊的研究應(yīng)用奠定了基礎(chǔ),如圖2所示。

圖片

圖2   單面鍵合式結(jié)構(gòu)
本文中采用ANSYSQ3D仿真軟件進(jìn)行模型寄生參數(shù)提取,以單條金屬鍵合線的長(zhǎng)度l和直徑d作為待優(yōu)化參數(shù),仿真分析l和d對(duì)寄生電感的影響特性,如圖3所示。

圖片

圖3   典型2維封裝結(jié)構(gòu)
各層的厚度h1-h7和邊距a1-a3為優(yōu)化參數(shù),其中,a3是DBC結(jié)構(gòu)上層銅距離陶瓷層邊沿的距離,因?yàn)榻^緣性能、DBC小坑和阻焊等工藝的需求,a3普遍等于1 mm。傳統(tǒng)典型2維封裝結(jié)構(gòu)模塊各層寬度w和厚度h的具體尺寸如表1所示。

表1   功率模塊典型尺寸

圖片


對(duì)于金屬引線鍵合式焊接的封裝結(jié)構(gòu),寄生電感主要來(lái)自于鍵合線,其寄生電感可近似表示為Lσ=μ0l2π(ln4ld?1.29)(1)式中:l為鍵合線長(zhǎng)度,l= w1/2+a1; μ0=4×10?7,是真空磁導(dǎo)率;d為鋁鍵合線的直徑。參照文獻(xiàn)對(duì)鍵合線進(jìn)行仿真,結(jié)果如圖4所示。經(jīng)驗(yàn)證與式(1)的數(shù)據(jù)擬合結(jié)果基本一致。

圖片

圖4   長(zhǎng)度、直徑、并聯(lián)根數(shù)對(duì)鍵合線電感的影響

曾正等的研究表明,芯片功率回路的寄生電容主要由DBC陶瓷層的寄生電容決定,可表示為Cσ=ε0εr(w1+2a1)2h3(2)
式中:ε0=8.85×10?12 F/m,表示真空介電常數(shù);εr=9,表示Al2O3陶瓷相對(duì)介電常數(shù),對(duì)于陶瓷AIN和陶瓷Si3N4,相對(duì)介電常數(shù)分別等于8.8和6.7。
寄生參數(shù)分布仿真結(jié)果如圖5所示,經(jīng)驗(yàn)證與式(1)和式(2)的數(shù)據(jù)擬合結(jié)果基本一致。

圖片

圖5   寄生參數(shù)分布
由圖4和圖5還可明顯看出各個(gè)關(guān)鍵變量對(duì)寄生參數(shù)的影響規(guī)律。鍵合線長(zhǎng)度越短、直徑越大,寄生電感越小,其中鍵合線長(zhǎng)度對(duì)寄生電感影響更顯著;陶瓷層越厚、面積越小,寄生電容越小,其中陶瓷層厚度對(duì)寄生電容影響更顯著。
降低開(kāi)關(guān)器件換流回路中電流流通路徑所通過(guò)的面積,可以減小雜散電感,將上半橋SiC MOSFET的續(xù)流二極管和下半橋的SiC MOSFET進(jìn)行位置互換,減小換流路徑的導(dǎo)通面積,可降低雜散電感,如圖6所示,其仿真結(jié)果如圖7所示。

圖片

圖6   傳統(tǒng)封裝與疊層封裝的換流路徑示意圖

圖片

圖7   疊層封裝不同換流回路雜散電感仿真結(jié)果
將功率模塊的封裝模型導(dǎo)入雜散參數(shù)提取軟件ANSYS.Q3D,依次采取網(wǎng)絡(luò)剖分、工況定義的步驟,設(shè)置激勵(lì)源(Source)和接地(Sink),并且分別把激勵(lì)源添加到功率模塊端子的表面,注意激勵(lì)源可以設(shè)置多個(gè),但是接地只能一個(gè),圖8是SiC模型的網(wǎng)格剖分圖。

圖片

圖 8   雜散電感提取模型與網(wǎng)格剖分
牛利剛等研究表明,利用ANSYS.Q3D提取半橋功率模塊的寄生電感為20.6 nH,實(shí)際檢測(cè)結(jié)果是21.23 nH,相差為0.63 nH,即相對(duì)誤差為3%,證明了疊層功率模塊雜散電感的仿真提取方法的準(zhǔn)確性。
金屬鍵合線的寄生電感越小,寄生振蕩越輕微,開(kāi)關(guān)關(guān)斷過(guò)程中的電壓沖擊越小,開(kāi)關(guān)速率越高,開(kāi)關(guān)損耗越??;與此同時(shí),鍵合線的寄生電容也應(yīng)盡可能小,以抑制電磁干擾的影響。
共同決定電磁干擾(EMI)噪聲的轉(zhuǎn)折頻率frfr=12πLσCσ√(3)

3 雙面散熱技術(shù)


雙面散熱的功率模塊封裝結(jié)構(gòu)可以通過(guò)取消金屬鍵合線,增加緩沖層并對(duì)緩沖層的形狀、材料、尺寸的優(yōu)化,可減小雜散電感,增加散熱途徑,降低功率模塊中芯片所承受的長(zhǎng)時(shí)間高溫危害,提高模塊的使用壽命。
根據(jù)雙面散熱結(jié)構(gòu)緩沖層的數(shù)量,分為無(wú)緩沖層、單層緩沖層、雙緩沖層3種,如圖9所示,其中無(wú)緩沖層和雙層緩沖層均為對(duì)稱結(jié)構(gòu)。緩沖層可有不同形式,其中有的采用金屬墊塊。文獻(xiàn)中研究了芯片發(fā)熱狀態(tài)下3種模塊所受最高結(jié)溫和金屬墊塊結(jié)構(gòu)所承受的熱應(yīng)力分布情況。

圖片

圖9   不同緩沖層的結(jié)構(gòu)
楊寧等的研究發(fā)現(xiàn),不同金屬構(gòu)造的各部分熱應(yīng)力值如表2所示,而對(duì)應(yīng)的仿真云圖如圖10所示。其中單層金屬緩沖層因結(jié)構(gòu)的不對(duì)稱性,對(duì)其上下應(yīng)力層需要單獨(dú)分析。

圖片



圖片

圖10   不同緩沖層的熱應(yīng)力仿真云圖
從仿真云圖中不難看出:無(wú)金屬墊塊緩沖層的雙面散熱結(jié)構(gòu)的最大等效熱應(yīng)力為99 MPa;單層金屬墊塊緩沖層的雙面散熱結(jié)構(gòu)的上基板最大等效熱應(yīng)力是109 MPa,下基板最大等效熱應(yīng)力是70 MPa,上下基板的最大等效應(yīng)力結(jié)果相差較大,主要與芯片和金屬層的熱膨脹系數(shù)、溫度差異有關(guān);雙金屬層墊塊緩沖層的最大等效熱應(yīng)力為81 MPa。
陸國(guó)權(quán)等研究表明,隨著鉬塊厚度的增加,應(yīng)力緩沖效果明顯,應(yīng)變減小。雙面互連的SiC MOSFET芯片最大von Mises應(yīng)力和納米銀互連層的最大塑性應(yīng)變均減小。同時(shí),在緩沖層和上基板間燒結(jié)銀互連層中增加1 mm銀墊片可進(jìn)一步降低雙面互連結(jié)構(gòu)的芯片應(yīng)力和互連層應(yīng)變,提高雙面散熱SiC模塊的熱機(jī)械可靠性。
與方形緩沖層對(duì)比,圓柱形緩沖層可有效消除芯片和納米銀互連層應(yīng)力集中效應(yīng),大幅降低SiC芯片所承受的最大von Mises應(yīng)力和燒結(jié)銀互連層的最大塑性應(yīng)變。采用圓柱形緩沖層時(shí),納米銀層塑性應(yīng)變比采用方形緩沖層時(shí)的納米銀層的塑性應(yīng)變值減少了47.5%。這主要是因?yàn)閳A柱形緩沖層邊緣過(guò)渡圓潤(rùn),應(yīng)力分布更均勻,而方形緩沖層的邊緣或尖角易造成芯片和燒結(jié)銀互連層出現(xiàn)應(yīng)力集中,造成局部熱應(yīng)力劇增。
雙面散熱引線鍵合式功率模塊如圖11所示。Nakatsu等研究表明,雙面散熱功率模塊的熱阻值比引線鍵合功率模塊約小50%;另外,它還具有優(yōu)異的電學(xué)性能。

圖片

圖 11   雙面散熱引線鍵合式功率模塊
Liang等研究表明,雙面散熱功率模塊的開(kāi)關(guān)損耗降低到商業(yè)功率模塊的10%,由于鍵合引線會(huì)使寄生參數(shù)數(shù)值較大,所以無(wú)鍵合線模塊,寄生參數(shù)數(shù)值大幅減小,SiC芯片的耐高溫、高頻特性優(yōu)勢(shì)得到極****揮。
模塊封裝中的材料都具有一定的臨界熱應(yīng)力點(diǎn),超過(guò)這一數(shù)值,就會(huì)出現(xiàn)斷裂失效的危險(xiǎn)。SiC 功率模塊的襯底尺寸主要取決于芯片的面積大小,絕緣襯底常規(guī)厚度在0.03 mm,翹曲率在3 mil/in,陶瓷材料用作絕緣襯底采用直接覆銅技術(shù)。金屬層邊緣采用臺(tái)階狀可有效減小應(yīng)力,臺(tái)階高度應(yīng)為銅層的一半。
基板主要趨勢(shì)是使用高性能材料,減少層數(shù)和界面的數(shù)量,同時(shí)保持電、熱和機(jī)械特性。絕緣金屬基板(IMS)和IMB基板僅用于中低功率模塊,如EV/HEV等。主流材料正逐漸從直接覆銅(DBC)轉(zhuǎn)向活性金屬釬焊(AMB),并采用高性能基材。雙面冷卻結(jié)構(gòu)將促進(jìn)在模塊的頂部使用第2個(gè)陶瓷基板/引線框架。
直接冷卻的基板,如銷鰭基板,減少熱界面的數(shù)量,避免使用熱界面材料(TIM)?;搴屠鋮s系統(tǒng)的集成以及冷卻模塊設(shè)計(jì)的部署和減少熱接口數(shù)量將是一個(gè)強(qiáng)大的趨勢(shì),為未來(lái)幾年提供新的解決方案。封裝技術(shù)還需要具備高溫可靠性的陶瓷基板和金屬底板等相應(yīng)套件。
目前能適應(yīng)碳化硅設(shè)備更高運(yùn)行溫度的硅膠和環(huán)氧材料正在研發(fā)中。為了實(shí)現(xiàn)復(fù)雜和緊湊的模塊設(shè)計(jì),在包括EV/HEV等許多應(yīng)用中,硅膠由于其低廉的價(jià)格,使用范圍更廣泛。環(huán)氧樹脂材料的應(yīng)用,仍受到高溫下可靠性的限制。

4 失效方式匯總


功率模塊的失效機(jī)理主要集中在電氣、溫度、材料、化學(xué)等各個(gè)方面,如圖12所示。

圖片

圖 12   功率模塊失效機(jī)理
功率模塊常見(jiàn)的損壞有過(guò)流損壞、過(guò)熱損壞和過(guò)壓損壞等,過(guò)流損壞為流經(jīng)功率模塊的電流超過(guò)耐流值,過(guò)流沖擊導(dǎo)致芯片發(fā)熱嚴(yán)重,超過(guò)結(jié)溫耐溫值,從而損壞芯片。過(guò)壓損壞為加在SiC MOSFET的漏極(G)和源極(S)間電壓UGS大于耐壓值,使得器件極間擊穿損壞。
保障功率模塊的安全運(yùn)行,不僅要考慮功率模塊電流電壓的可承受范圍,還須考慮驅(qū)動(dòng)信號(hào)添加后,避免導(dǎo)通電路出現(xiàn)短路問(wèn)題和上下橋臂直通等故障。因此,可以通過(guò)增加檢測(cè)保護(hù)電路和對(duì)控制程序進(jìn)行優(yōu)化來(lái)保障功率模塊的安全運(yùn)行。各種原因?qū)е碌墓β誓K的真實(shí)失效現(xiàn)象如圖13~圖19所示。其中功率模塊里的續(xù)流二極管發(fā)生短路和集電極-****極擊穿燒斷等是常見(jiàn)的失效現(xiàn)象。

圖片

圖13   不良焊接的表現(xiàn)

圖片

圖14   超聲引線鍵合的不同效果圖

圖片

圖15   瞬態(tài)過(guò)電流引起的器件失效現(xiàn)象

圖片

圖16   瞬態(tài)過(guò)電流導(dǎo)致的芯片燒毀現(xiàn)象

圖片

圖17   灌膠環(huán)節(jié)的不良現(xiàn)象

圖片

圖18   功率模塊過(guò)電壓擊穿現(xiàn)象

圖片

圖19   功率模塊柵極失效圖
對(duì)功率模塊通過(guò)均勻涂抹導(dǎo)熱硅脂作為熱界面材料(TIM)已經(jīng)不能滿足要求,采用金屬燒結(jié)等方法是下一步的研究方向,另外增加散熱器、風(fēng)扇和溫度傳感器等可有效防止過(guò)熱問(wèn)題。增加電流互感器檢測(cè)器件與RC緩沖電路和對(duì)程序驅(qū)動(dòng)算法進(jìn)行優(yōu)化等措施可有效解決過(guò)流問(wèn)題。通過(guò)母線電壓采集,進(jìn)行對(duì)比保護(hù)等可有效解決過(guò)壓?jiǎn)栴}。

5 先進(jìn)技術(shù)展望


基于焊接與引線鍵合的傳統(tǒng)材料工藝存在熔點(diǎn)低、高溫蠕變失效、引線纏繞、寄生參數(shù)等無(wú)法解決的問(wèn)題,新型互連材料正從焊接向壓接、燒結(jié)技術(shù)發(fā)展。與焊接式功率模塊相比,壓接式模塊的優(yōu)勢(shì)具體有以下幾點(diǎn)。
(1) 焊接通過(guò)引線連接芯片和PCB板,在多次功率循環(huán)后容易老化脫落,造成模塊失效。而且,焊接層空洞增加熱阻,降低可靠性。壓接借助壓力將芯片壓在基板上,電流從銅板直接流過(guò),提高可靠性。
(2) 傳統(tǒng)焊接式多為單面散熱,而壓接式多為雙面散熱,可提升散熱性能,有利于器件性能的充分發(fā)揮。
(3) 鍵合線和焊接層引入雜散參數(shù),高頻特性下,電壓和電流易產(chǎn)生較大波動(dòng),影響芯片串聯(lián)特性。
考慮到納米銀焊膏具有高導(dǎo)電率、高導(dǎo)熱性和優(yōu)良的延展性,且熔點(diǎn)顯著高于傳統(tǒng)焊料,相關(guān)科研團(tuán)隊(duì)利用納米銀焊膏將芯片和集電極鉬層燒結(jié)在一起,成功開(kāi)發(fā)出銀燒結(jié)壓接封裝器件,顯示出其在壓接型功率模塊的封裝應(yīng)用中具有一定優(yōu)勢(shì)。
銀燒結(jié)封裝可以降低壓接型器件的導(dǎo)通電壓和通態(tài)損耗,減緩芯片與****極鉬層間的接觸磨損,提升器件使用壽命。
目前燒結(jié)封裝技術(shù)在發(fā)展中仍然存在著不能忽略的問(wèn)題,同時(shí)也提出如下一些可行性方案。
(1) 由于銀和SiC芯片背面材料熱膨脹系數(shù)不同引起的問(wèn)題,可通過(guò)添加金屬緩沖層來(lái)改善互連性能,但會(huì)增加功率模塊封裝工藝的復(fù)雜性和成本。采用滿足性能指標(biāo)和可靠性的燒結(jié)層代替緩沖層,成為研發(fā)的可行性方案。
(2) 銀層的電遷移現(xiàn)象,不利于功率電子器件長(zhǎng)期可靠應(yīng)用。銅燒結(jié)既能滿足減少電遷移現(xiàn)象,又能夠降低成本,使其成為高溫模具連接材料的一種很有前途的替代品。
(3) 優(yōu)化燒結(jié)工業(yè),創(chuàng)新燒結(jié)方案,縮減預(yù)熱、燒結(jié)時(shí)長(zhǎng),提升生產(chǎn)效率;流水線工作,提升可制造性和生產(chǎn)設(shè)計(jì)的靈活性。
(4) 與無(wú)壓燒結(jié)相比,低壓燒結(jié)可靠度和散熱性能較好。雖然部分廠商已解決壓力問(wèn)題,但是燒結(jié)過(guò)程中的致密性、連接層的溫控和極限環(huán)境中性能退化問(wèn)題還尚待解決。
上述問(wèn)題的解決需要產(chǎn)業(yè)鏈上下游的聯(lián)動(dòng)協(xié)調(diào)攻關(guān),部分問(wèn)題隨著技術(shù)進(jìn)步將逐步得到解決。盡管當(dāng)前模塊封裝幾乎全是以連線鍵合方式為主,預(yù)計(jì)未來(lái)3~5年銀燒結(jié)封裝技術(shù)會(huì)是功率模塊互連的主流技術(shù)。由于銀離子遷移對(duì)互聯(lián)結(jié)構(gòu)有負(fù)面影響,加之成本和熱應(yīng)力適配需求,與銀燒結(jié)技術(shù)類似的瞬時(shí)液相燒結(jié)(TLPS)、銀銅燒結(jié)、銅燒結(jié)技術(shù)和相應(yīng)的焊漿材料也在快速發(fā)展,部分技術(shù)瓶頸有望在近幾年突破。芯片貼裝、基板連接、模塊與散熱器的連接等都是燒結(jié)技術(shù)潛在的應(yīng)用范圍。

6 結(jié)論


本文重點(diǎn)分析和綜述了碳化硅功率模塊封裝中的4個(gè)關(guān)鍵問(wèn)題:(1)總結(jié)歸納了結(jié)構(gòu)各異的低雜散參數(shù)模塊封裝形式,列舉闡述各模塊性能優(yōu)勢(shì);(2)聚焦典型封裝結(jié)構(gòu)下,分析概括鍵合式功率模塊的金屬鍵合線長(zhǎng)度、寬度和并聯(lián)根數(shù)對(duì)寄生電感影響,直接覆銅(DBC)陶瓷基板中陶瓷層的面積、高度對(duì)寄生電容的影響,以及采用疊層換流技術(shù)優(yōu)化寄生參數(shù)等成果;(3)在封裝模塊散熱方面,綜述了雙面散熱結(jié)構(gòu)的緩沖層厚度和形狀對(duì)散熱和應(yīng)力形變的影響;(4)匯總了功率模塊常見(jiàn)失效圖譜和解決措施,為模塊的安全使用提供參考。最后探討了先進(jìn)燒結(jié)銀技術(shù)的需求和關(guān)鍵問(wèn)題,并展望了燒結(jié)封裝技術(shù)和材料發(fā)展方向。



*博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。



關(guān)鍵詞: SiC

相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉