博客專(zhuān)欄

EEPW首頁(yè) > 博客 > SiC-MOSFET特征及與Si-MOSFET、IGBT的區(qū)別

SiC-MOSFET特征及與Si-MOSFET、IGBT的區(qū)別

發(fā)布人:旺材芯片 時(shí)間:2022-07-17 來(lái)源:工程師 發(fā)布文章

來(lái)源:techclass.rohm


功率轉(zhuǎn)換電路中的晶體管的作用非常重要,為進(jìn)一步實(shí)現(xiàn)低損耗與應(yīng)用尺寸小型化,一直在進(jìn)行各種改良。SiC功率元器件半導(dǎo)體的優(yōu)勢(shì)前面已經(jīng)介紹過(guò),如低損耗、高速開(kāi)關(guān)、高溫工作等,顯而易見(jiàn)這些優(yōu)勢(shì)是非常有用的。本章將通過(guò)其他功率晶體管的比較,進(jìn)一步加深對(duì)SiC-MOSFET的理解。

SiC-MOSFET的特征
SiC-SBD的章節(jié)中也使用了類(lèi)似的圖介紹了耐壓覆蓋范圍。本圖也同樣,通過(guò)與Si功率元器件的比較,來(lái)表示SiC-MOSFET的耐壓范圍。

目前SiC-MOSFET有用的范圍是耐壓600V以上、特別是1kV以上。關(guān)于優(yōu)勢(shì),現(xiàn)將1kV以上的產(chǎn)品與當(dāng)前主流的Si-IGBT來(lái)比較一下看看。相對(duì)于IGBT,SiC-MOSFET降低了開(kāi)關(guān)關(guān)斷時(shí)的損耗,實(shí)現(xiàn)了高頻率工作,有助于應(yīng)用的小型化。相對(duì)于同等耐壓的SJ-MOSFET(超級(jí)結(jié)MOSFET),導(dǎo)通電阻較小,可減少相同導(dǎo)通電阻的芯片面積,并顯著降低恢復(fù)損耗。

圖片

下表是600V~2000V耐壓的功率元器件的特征匯總。

圖片

雷達(dá)圖的RonA為單位面積的導(dǎo)通電阻(表示傳導(dǎo)時(shí)損耗的參數(shù)),BV為元器件耐壓,Err為恢復(fù)損耗,Eoff為關(guān)斷開(kāi)關(guān)的損耗。SiC已經(jīng)很完美,在目前情況的比較中絕非高估。

下一篇將結(jié)合與SJ-MOSFET和IGBT的比較,更詳細(xì)地介紹SiC-MOSFET的特征。


功率晶體管的結(jié)構(gòu)與特征比較


繼前篇內(nèi)容,繼續(xù)進(jìn)行各功率晶體管的比較。本篇比較結(jié)構(gòu)和特征。

功率晶體管的結(jié)構(gòu)與特征比較

下圖是各功率晶體管的結(jié)構(gòu)、耐壓、導(dǎo)通電阻、開(kāi)關(guān)速度的比較。

圖片

使用的工藝技術(shù)不同結(jié)構(gòu)也不同,因而電氣特征也不同。補(bǔ)充說(shuō)明一下,DMOS是平面型的MOSFET,是常見(jiàn)的結(jié)構(gòu)。Si的功率MOSFET,因其高耐壓且可降低導(dǎo)通電阻,近年來(lái)超級(jí)結(jié)(Super Junction)結(jié)構(gòu)的MOSFET(以下簡(jiǎn)稱(chēng)“SJ-MOSFET”)應(yīng)用越來(lái)越廣泛。關(guān)于SiC-MOSFET,這里給出了DMOS結(jié)構(gòu),不過(guò)目前ROHM已經(jīng)開(kāi)始量產(chǎn)特性更優(yōu)異的溝槽式結(jié)構(gòu)的SiC-MOSFET。具體情況計(jì)劃后續(xù)進(jìn)行介紹。

在特征方面,Si-DMOS存在導(dǎo)通電阻方面的課題,如前所述通過(guò)采用SJ-MOSFET結(jié)構(gòu)來(lái)改善導(dǎo)通電阻。IGBT在導(dǎo)通電阻和耐壓方面表現(xiàn)優(yōu)異,但存在開(kāi)關(guān)速度方面的課題。SiC-DMOS在耐壓、導(dǎo)通電阻、開(kāi)關(guān)速度方面表現(xiàn)都很優(yōu)異,而且在高溫條件下的工作也表現(xiàn)良好,可以說(shuō)是具有極大優(yōu)勢(shì)的開(kāi)關(guān)元件。

這張圖是各晶體管標(biāo)準(zhǔn)化的導(dǎo)通電阻和耐壓圖表。從圖中可以看出,理論上SiC-DMOS的耐壓能力更高,可制作低導(dǎo)通電阻的晶體管。目前SiC-DMOS的特性現(xiàn)狀是用橢圓圍起來(lái)的范圍。通過(guò)未來(lái)的發(fā)展,性能有望進(jìn)一步提升。

圖片

從下一篇開(kāi)始,將單獨(dú)介紹與SiC-MOSFET的比較。


SiC-MOSFET-與Si-MOSFET的區(qū)別


從本文開(kāi)始,將逐一進(jìn)行SiC-MOSFET與其他功率晶體管的比較。

本文將介紹與Si-MOSFET的區(qū)別。尚未使用過(guò)SiC-MOSFET的人,與其詳細(xì)研究每個(gè)參數(shù),不如先弄清楚驅(qū)動(dòng)方法等與Si-MOSFET有怎樣的區(qū)別。在這里介紹SiC-MOSFET的驅(qū)動(dòng)與Si-MOSFET的比較中應(yīng)該注意的兩個(gè)關(guān)鍵要點(diǎn)。

與Si-MOSFET的區(qū)別:驅(qū)動(dòng)電壓

SiC-MOSFET與Si-MOSFET相比,由于漂移層電阻低,通道電阻高,因此具有驅(qū)動(dòng)電壓即柵極-源極間電壓Vgs越高導(dǎo)通電阻越低的特性。下圖表示SiC-MOSFET的導(dǎo)通電阻與Vgs的關(guān)系。

圖片

導(dǎo)通電阻從Vgs為20V左右開(kāi)始變化(下降)逐漸減少,接近最小值。一般的IGBT和Si-MOSFET的驅(qū)動(dòng)電壓為Vgs=10~15V,而SiC-MOSFET建議在Vgs=18V前后驅(qū)動(dòng),以充分獲得低導(dǎo)通電阻。也就是說(shuō),兩者的區(qū)別之一是驅(qū)動(dòng)電壓要比Si-MOSFET高。與Si-MOSFET進(jìn)行替換時(shí),還需要探討柵極驅(qū)動(dòng)器電路。

與Si-MOSFET的區(qū)別:內(nèi)部柵極電阻

SiC-MOSFET元件本身(芯片)的內(nèi)部柵極電阻Rg依賴(lài)于柵電極材料的薄層電阻和芯片尺寸。如果是相同設(shè)計(jì),則與芯片尺寸成反比,芯片越小柵極電阻越高。同等能力下,SiC-MOSFET的芯片尺寸比Si元器件的小,因此柵極電容小,但內(nèi)部柵極電阻增大。例如,1200V 80mΩ產(chǎn)品(S2301為裸芯片產(chǎn)品)的內(nèi)部柵極電阻約為6.3Ω。

圖片

這不僅局限于SiC-MOSFET,MOSFET的開(kāi)關(guān)時(shí)間依賴(lài)于外置柵極電阻和上面介紹的內(nèi)部柵極電阻合在一起的綜合柵極電阻值。SiC-MOSFET的內(nèi)部柵極電阻比Si-MOSFET大,因此要想實(shí)現(xiàn)高速開(kāi)關(guān),需要使外置柵極電阻盡量小,小到幾Ω左右。

但是,外置柵極電阻還承擔(dān)著對(duì)抗施加于柵極的浪涌的任務(wù),因此必須注意與浪涌保護(hù)之間的良好平衡。


與IGBT的區(qū)別


上一章針對(duì)與Si-MOSFET的區(qū)別,介紹了關(guān)于SiC-MOSFET驅(qū)動(dòng)方法的兩個(gè)關(guān)鍵要點(diǎn)。本章將針對(duì)與IGBT的區(qū)別進(jìn)行介紹。

與IGBT的區(qū)別:Vd-Id特性

Vd-Id特性是晶體管最基本的特性之一。下面是25℃和150℃時(shí)的Vd-Id特性。

圖片

請(qǐng)看25℃時(shí)的特性圖表。SiC及Si MOSFET的Id相對(duì)Vd(Vds)呈線性增加,但由于IGBT有上升電壓,因此在低電流范圍MOSFET元器件的Vds更低(對(duì)于IGBT來(lái)說(shuō)是集電極電流、集電極-****極間電壓)。不言而喻,Vd-Id特性也是導(dǎo)通電阻特性。根據(jù)歐姆定律,相對(duì)Id,Vd越低導(dǎo)通電阻越小,特性曲線的斜率越陡,導(dǎo)通電阻越低。

IGBT的低Vd(或低Id)范圍(在本例中是Vd到1V左右的范圍),在IGBT中是可忽略不計(jì)的范圍。這在高電壓大電流應(yīng)用中不會(huì)構(gòu)成問(wèn)題,但當(dāng)用電設(shè)備的電力需求從低功率到高功率范圍較寬時(shí),低功率范圍的效率并不高。

相比之下,SiC MOSFET可在更寬的范圍內(nèi)保持低導(dǎo)通電阻。

此外,可以看到,與150℃時(shí)的Si MOSFET特性相比,SiC、Si-MOSFET的特性曲線斜率均放緩,因而導(dǎo)通電阻增加。但是,SiC-MOSFET在25℃時(shí)的變動(dòng)很小,在25℃環(huán)境下特性相近的產(chǎn)品,差距變大,溫度增高時(shí)SiC MOSFET的導(dǎo)通電阻變化較小。

與IGBT的區(qū)別:關(guān)斷損耗特性

前面多次提到過(guò),SiC功率元器件的開(kāi)關(guān)特性?xún)?yōu)異,可處理大功率并高速開(kāi)關(guān)。在此具體就與IGBT開(kāi)關(guān)損耗特性的區(qū)別進(jìn)行說(shuō)明。

眾所周知,當(dāng)IGBT的開(kāi)關(guān)OFF時(shí),會(huì)流過(guò)元器件結(jié)構(gòu)引起的尾(tail)電流,因此開(kāi)關(guān)損耗增加是IGBT的基本特性。

圖片

比較開(kāi)關(guān)OFF時(shí)的波形可以看到,SiC-MOSFET原理上不流過(guò)尾電流,因此相應(yīng)的開(kāi)關(guān)損耗非常小。在本例中,SiC-MOSFET+SBD(肖特基勢(shì)壘二極管)的組合與IGBT+FRD(快速恢復(fù)二極管)的關(guān)斷損耗Eoff相比,降低了88%。

還有重要的一點(diǎn)是IGBT的尾電流隨溫度升高而增加。順便提一下,SiC-MOSFET的高速驅(qū)動(dòng)需要適當(dāng)調(diào)整外置的柵極電阻Rg。這在前文“與Si-MOSFET的區(qū)別”中也提到過(guò)。

與IGBT的區(qū)別:導(dǎo)通損耗特性

接下來(lái)看開(kāi)關(guān)導(dǎo)通時(shí)的損耗。

圖片

IGBT在開(kāi)關(guān)導(dǎo)通時(shí),流過(guò)Ic(藍(lán)色曲線)用紅色虛線圈起來(lái)部分的電流。這多半是二極管的恢復(fù)電流帶來(lái)的,是開(kāi)關(guān)導(dǎo)通時(shí)的一大損耗。請(qǐng)記?。涸诓⒙?lián)使用SiC-SBC時(shí),加上恢復(fù)特性的快速性,MOSFET開(kāi)關(guān)導(dǎo)通時(shí)的損耗減少;FRD成對(duì)時(shí)的開(kāi)關(guān)導(dǎo)通損耗與IGBT的尾電流一樣隨溫度升高而增加。

總之,關(guān)于開(kāi)關(guān)損耗特性可以明確的是:SiC-MOSFET優(yōu)于IGBT。

另外,這里提供的數(shù)據(jù)是在ROHM試驗(yàn)環(huán)境下的結(jié)果。驅(qū)動(dòng)電路等條件不同,結(jié)果也可能不同。


體二極管的特性


上一章介紹了與IGBT的區(qū)別。本章將對(duì)SiC-MOSFET的體二極管的正向特性與反向恢復(fù)特性進(jìn)行說(shuō)明。

圖片

如圖所示,MOSFET(不局限于SiC-MOSFET)在漏極-源極間存在體二極管。從MOSFET的結(jié)構(gòu)上講,體二極管是由源極-漏極間的pn結(jié)形成的,也被稱(chēng)為“寄生二極管”或“內(nèi)部二極管”。對(duì)于MOSFET來(lái)說(shuō),體二極管的性能是重要的參數(shù)之一,在應(yīng)用中使用時(shí),其性能發(fā)揮著至關(guān)重要的作用。

SiC-MOSFET體二極管的正向特性

下圖表示SiC-MOSFET的Vds-Id特性。在SiC-MOSFET中,以源極為基準(zhǔn)向漏極施加負(fù)電壓,體二極管為正向偏置狀態(tài)。該圖中Vgs=0V的綠色曲線基本上表示出體二極管的Vf特性,。Vgs為0V即MOSFET在關(guān)斷狀態(tài)下,沒(méi)有通道電流,因此該條件下的Vd-Id特性可以說(shuō)是體二極管的Vf-If特性。如“何謂碳化硅”中提到的,SiC的帶隙更寬,Vf比Si-MOSFET大得多。

而在給柵極-源極間施加18V電壓、SiC-MOSFET導(dǎo)通的條件下,電阻更小的通道部分(而非體二極管部分)流過(guò)的電流占支配低位。為方便從結(jié)構(gòu)角度理解各種狀態(tài),下面還給出了MOSFET的截面圖。

圖片

SiC-MOSFET體二極管的反向恢復(fù)特性

MOSFET體二極管的另一個(gè)重要特性是反向恢復(fù)時(shí)間(trr)。trr是二極管開(kāi)關(guān)特性相關(guān)的重要參數(shù)這一點(diǎn)在SiC肖特基勢(shì)壘二極管一文中也已說(shuō)明過(guò)。不言而喻,MOSFET的體二極管是具有pn結(jié)的二極管,因而存在反向恢復(fù)現(xiàn)象,其特性表現(xiàn)為反向恢復(fù)時(shí)間(trr)。下面是1000V耐壓的Si-MOSFET和SiC-MOSFET SCT2080KE的trr特性比較。

圖片

如圖所示,示例的Si-MOSFET的trr較慢,流過(guò)較大的Irr。而SiC-MOSFET SCT2080KE的體二極管速度則非???。trr、Irr均為幾乎可忽略的水平,恢復(fù)損耗Err已經(jīng)大幅降低。


SiC-MOSFET的應(yīng)用實(shí)例

本章將介紹部分SiC-MOSFET的應(yīng)用實(shí)例。其中也包括一些以前的信息和原型級(jí)別的內(nèi)容,總之希望通過(guò)這些介紹能幫助大家認(rèn)識(shí)采用SiC-MOSFET的好處以及可實(shí)現(xiàn)的新功能。另外,除了SiC-MOSFET,還可以從這里了解SiC-SBD、全SiC模塊的應(yīng)用實(shí)例。

SiC-MOSFET應(yīng)用實(shí)例1:移相DC/DC轉(zhuǎn)換器

下面是演示機(jī),是與功率Power Assist Technology Ltd.聯(lián)合制作的。

圖片

全橋式逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結(jié)構(gòu)SiC-MOSFET),組成相同尺寸的移相DCDC轉(zhuǎn)換器,就是用來(lái)比較各產(chǎn)品效率的演示機(jī)。

圖片
圖片

首先,在SiC-MOSFET的組成中,發(fā)揮了開(kāi)關(guān)性能的優(yōu)勢(shì)實(shí)現(xiàn)了Si IGBT很難實(shí)現(xiàn)的100kHz高頻工作和功率提升。另外,第二代(2G)SiC-MOSFET中,由2個(gè)晶體管并聯(lián)組成了1個(gè)開(kāi)關(guān),但由于第三代(3G)SiC-MOSFET導(dǎo)通電阻更低,晶體管數(shù)得以從8個(gè)減少到4個(gè)。關(guān)于效率,采用第三代(3G)SiC-MOSFET時(shí)的結(jié)果最理想,無(wú)論哪種SiC-MOSFET的效率均超過(guò)Si IGBT。

SiC-MOSFET應(yīng)用實(shí)例2:脈沖電源

脈沖電源是在短時(shí)間內(nèi)瞬時(shí)供電的系統(tǒng),應(yīng)用例有氣體激光器、加速器、X射線、等離子電源等。作為現(xiàn)有的解決方案有晶閘管等真空管和Si開(kāi)關(guān),但市場(chǎng)需要更高耐壓更高速的開(kāi)關(guān)。針對(duì)這種市場(chǎng)需求,利用SiC的高耐壓和高速性能,實(shí)現(xiàn)了超高電壓高速開(kāi)關(guān)。從高速性的角度看這是Si IGBT很難實(shí)現(xiàn)的。下例是與福島SiC應(yīng)用技研株式會(huì)社、株式會(huì)社京都New-Tronics、國(guó)立研究開(kāi)發(fā)法人科學(xué)技術(shù)振興機(jī)構(gòu)合作開(kāi)發(fā),在CEATEC 2014、TECHNO-FRONTIER2015展出的產(chǎn)品。

圖片

?超高壓脈沖電源

  • 特征

  • ?超高耐壓偽N通道
    SiC MOSFET

  • ?低導(dǎo)通電阻
    (以往產(chǎn)品的1/100以下)

  • ?高重復(fù)頻率

  • 應(yīng)用例

  • ?荷電粒子加速器

  • ?醫(yī)療用設(shè)備電源

  • ?等離子發(fā)生器等

圖片

圖片

?1~10kV隨機(jī)脈沖發(fā)生器:13.2kV SiC開(kāi)關(guān)
圖片


*博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。



關(guān)鍵詞: Si-MOSFET

相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉