關(guān) 閉

新聞中心

EEPW首頁 > 工控自動化 > 設(shè)計應(yīng)用 > RBF神經(jīng)網(wǎng)絡(luò)在智能傳感器模塊設(shè)計中的應(yīng)用

RBF神經(jīng)網(wǎng)絡(luò)在智能傳感器模塊設(shè)計中的應(yīng)用

作者: 時間:2012-06-13 來源:網(wǎng)絡(luò) 收藏

Matlab源程序

Matlab源程序如下:

clc

clear

close all %程序開始前,清屏,清除其它變量

%輸入原始數(shù)據(jù),每一列為一個變量,行數(shù)為樣本的個數(shù)。原始標(biāo)定數(shù)據(jù)的輸入,可以將數(shù)據(jù)直接輸入至程序中,也可以將數(shù)據(jù)先輸入至文件,然后在程序中讀入數(shù)據(jù)文件。數(shù)據(jù)中的P、Ut、Ui、Up均為missing image file維列向量, missing image file為標(biāo)定數(shù)據(jù)點的個數(shù)

raw_data=[P Ut Ui Up]; %學(xué)習(xí)(訓(xùn)練)樣本

data_test=[P_test Ut_test Ui_test Up_test]; %測試樣本

%根據(jù)原始數(shù)據(jù)制作學(xué)習(xí)(訓(xùn)練)樣本與測試樣本,學(xué)習(xí)樣本與測試樣本的數(shù)據(jù)格式相同

P=raw_data(: , 1); Ui=raw_data(: , 2); Ut=raw_data(: , 3); Up=raw_data(: , 4);

P_test=data_test(: , 1); Ui=data_test(: , 2); Ut=data_test(: , 3); Up=data_test(: , 4);

P1= ; [Up Ui Ut] %學(xué)習(xí)樣本輸入

T1= ; P' %學(xué)習(xí)樣本期望輸出

P2= ;[Up_test Ui _test Ut_t est]' %測試樣本輸入

T2=P_test' ; %測試樣本輸出

%將輸入數(shù)據(jù)進(jìn)行歸一化

[PN1,Minp,maxp,TN1,mint,maxt]=premnmx(P1,T1);

PN2=tramnmx(P2,minp,maxp);

TN2=tramnmx(T2,mint,maxt);

%訓(xùn)練

switch 2

case 1 %神經(jīng)元數(shù)是訓(xùn)練樣本個數(shù)

spread=0.1; %此值越大,覆蓋的函數(shù)數(shù)值就越大(默認(rèn)為1)

net=newrbe(PN1,TN1,spread);

case 2 %神經(jīng)元數(shù)逐步增加,最多就是訓(xùn)練樣本個數(shù)

goal=1e-8; %訓(xùn)練誤差的平方和(默認(rèn)為0)

spread=0.1; %此值越大,需要的神經(jīng)元就越少(默認(rèn)為1)

MN=size(PN1,2); %最大神經(jīng)元數(shù)(默認(rèn)為訓(xùn)練樣本個數(shù))

DF=2; %顯示間隔(默認(rèn)為25)

net=newrb(PN1,TN1,goal,spread,MN,DF);

case 3

spread=0.1; %此值越大,需要的神經(jīng)元就越少(默認(rèn)為1)

net=newgrnn(PN1,TN1,spread);

end

%測試

YN1=sim(net,PN1); %學(xué)習(xí)(訓(xùn)練)樣本實際輸出

YN2=sim(net,PN2); %測試樣本實際輸出

MSE1=mean((TN1-YN1).ˆ2 %學(xué)習(xí)(訓(xùn)練)樣本實際輸出的均方誤差

%n1=length(TN1);%e1=sum((TN1-YN1).ˆ2/n1

%e1與MSE1相等

MSETD1=std((TN1-YN1).ˆ2

MSE2=mean((TN2-YN2).ˆ2 %測試樣本實際輸出均方誤差

%n2=length(TN2);%e2=sum((TN2-YN2).ˆ2/n2

%e2與MSE2相等

MSETD2=std((TN2-YN2).ˆ2

%反歸一化

Y1=postmnmx (YN1,mint,maxt)' %將歸一化的學(xué)習(xí)(訓(xùn)練)輸出數(shù)據(jù)恢復(fù)為原始數(shù)據(jù)

E1=Y1-P %學(xué)習(xí)(訓(xùn)練)輸出數(shù)據(jù)與標(biāo)定值之間的偏差

Y2=postmnmx (YN2,mint,maxt)' %將歸一化的測試輸出數(shù)據(jù)恢復(fù)為原始數(shù)據(jù)

E2=Y2-P_test %測試輸出數(shù)據(jù)與標(biāo)定值之間的偏差

max(E2)

min(E2)

采用經(jīng)過數(shù)據(jù)歸一化處理的程序

采用Matlab中的newrb()函數(shù),neurons=252。學(xué)習(xí)樣本經(jīng)神經(jīng)網(wǎng)絡(luò)訓(xùn)練后的輸出值與相應(yīng)的壓力標(biāo)定值之間的最大誤差絕對值為1.0396e-011,均方誤差MSE1=5.6613e-023,均方誤差的標(biāo)準(zhǔn)差MSETD1=2.4666e-022。這里省略學(xué)習(xí)樣本的預(yù)測輸出表。可見,采用RBF神經(jīng)網(wǎng)絡(luò)對學(xué)習(xí)樣本的輸出已經(jīng)消除了壓力的交叉敏感影響(在誤差允許的范圍內(nèi))。

檢驗樣本經(jīng)RBF神經(jīng)網(wǎng)絡(luò)的輸出值與相應(yīng)的壓力標(biāo)定值之間最大偏差絕對值為max=0.0113,均方誤差MSE2=3.8568e-005,均方誤差的標(biāo)準(zhǔn)差MSETD2=2.1727e-004。輸出樣本的詳細(xì)情況見表5(只列出部分?jǐn)?shù)據(jù))。

數(shù)據(jù)融合效果評價

降低溫度與電源波動兩個干擾量的影響,系統(tǒng)穩(wěn)定性的改善程度分別用融合前后的零位、靈敏度溫度系數(shù)以及電流影響系數(shù)來評價。

由于學(xué)習(xí)(訓(xùn)練)樣本的網(wǎng)絡(luò)輸出值與標(biāo)定值之間的偏差很?。ň∮?.0e-011),如果根據(jù)這些數(shù)據(jù)來計算融合后的效果,可以認(rèn)為已經(jīng)完全消除交叉敏感。通過表5可知,本例中檢驗樣本的網(wǎng)絡(luò)輸出值與標(biāo)定值之間的偏差與學(xué)習(xí)樣本的偏差相比,偏差較大,故按檢驗樣本計算出數(shù)值來評價數(shù)據(jù)融合效果。

表5 輸出樣本

注:表中T表示工作溫度,I表示工作電流,P表示壓力標(biāo)定值,表示壓力計算值,偏差,單位都是V。

融合前:滿量程輸出值UFS=4.928V,當(dāng)溫度的變化范圍為=39℃(由25℃至64℃),電流由6mA至11mA,變動時,零點值的最大變化范圍=0.356V(由0.328V至-0.028V),滿量程輸出值由4.928V下降到2.710V,輸出變化范圍=-2.218V。

(1)零位溫度系數(shù)

(2)靈敏度溫度系數(shù)

(3)電流影響系數(shù)

利用檢驗樣本計算的融合后的零位溫度系數(shù)、靈敏度溫度系數(shù)以及電流影響系數(shù)如下:

=39℃,變化范圍內(nèi),零點融合計算值的最大偏差 =0.0113MPa;滿量程壓力PFS=0.5MPa,其融合計算值的最大偏差量=0.0007MPa,則有

將融合前和RBF神經(jīng)網(wǎng)絡(luò)融合后的各參數(shù)列于表6中。

表6 融合前和RBF神經(jīng)網(wǎng)絡(luò)融合后的各參數(shù)

從表6可見,經(jīng)RBF神經(jīng)網(wǎng)絡(luò)融合后,零位溫度系數(shù)降低到融合前的1/3,靈敏度溫度系數(shù)降低約3個數(shù)量級,電流影響系數(shù)降低約2個數(shù)量級

結(jié)束語

由于半導(dǎo)體的特性參數(shù)易受溫度、電流的影響而變化,壓阻式將會產(chǎn)生很大的零位溫度漂移、靈敏度溫度漂移和電流影響漂移,這是壓阻式傳感器最大的弱點。因此,研究改善壓阻式壓力傳感器的溫度穩(wěn)定性與恒流源供電電流的穩(wěn)定性,在生產(chǎn)實踐中很有意義。采用RBF神經(jīng)網(wǎng)絡(luò)法,了抗兩個干擾量影響的化軟件,對壓阻式壓力傳感器穩(wěn)定性進(jìn)行改善,取得了很好的效果。該方法簡單易行,精度較高,將壓阻式壓力傳感器輸出精度控制在0.01%以內(nèi)。

半導(dǎo)體制冷相關(guān)文章:半導(dǎo)體制冷原理



上一頁 1 2 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉