基于ADC技術(shù)的MCU系統(tǒng)數(shù)據(jù)采集方案
孔徑抖動(dòng)和延遲
轉(zhuǎn)換啟動(dòng)請(qǐng)求信號(hào)可以看作是采樣時(shí)鐘,因此它決定ADC采樣和保持電路實(shí)際捕獲輸入信號(hào)的時(shí)間點(diǎn)。當(dāng)配置ADC轉(zhuǎn)換請(qǐng)求時(shí)基時(shí),需要考慮與采樣和保持電路相關(guān)的規(guī)格,即孔徑抖動(dòng)和孔徑延遲。這兩個(gè)規(guī)格影響輸入信號(hào)采樣的精確度,因?yàn)檩斎胄盘?hào)相對(duì)于孔徑時(shí)間延遲在不斷快速變化,如圖2所示。
圖2:孔徑抖動(dòng)和延遲。
孔徑抖動(dòng)在生成轉(zhuǎn)換啟動(dòng)信號(hào)的時(shí)鐘系統(tǒng)和其他電路中將導(dǎo)致誤差(即時(shí)鐘抖動(dòng)),同時(shí)孔徑延遲導(dǎo)致轉(zhuǎn)換啟動(dòng)信號(hào)和采樣開關(guān)之間電路延遲??讖蕉秳?dòng)在數(shù)據(jù)采集系統(tǒng)中會(huì)引入噪聲和失真??讖窖舆t可以由MCU設(shè)計(jì)人員內(nèi)部管理,使其最小化,以避免由于長延遲而增加更多抖動(dòng)的風(fēng)險(xiǎn)??讖窖舆t在數(shù)據(jù)采集系統(tǒng)中引起延遲誤差。太長的孔徑延遲類似于水池在“水池滿”信號(hào)發(fā)出之前就開始溢出。
由于上述原因,需要精確的時(shí)基用于產(chǎn)生穩(wěn)定的轉(zhuǎn)換啟動(dòng)請(qǐng)求時(shí)序。MCU提供一系列板上時(shí)鐘或外部時(shí)鐘源作為系統(tǒng)時(shí)鐘選擇。系統(tǒng)設(shè)計(jì)人員必須仔細(xì)選擇具有足夠精度的時(shí)鐘源,以滿足其數(shù)據(jù)采集系統(tǒng)的需求。對(duì)于高速輸入源,需要非常精確的晶體振蕩器。另一方面,直流(DC)或慢速輸入可以更好地容忍時(shí)鐘系統(tǒng)錯(cuò)誤,但仍然需要在轉(zhuǎn)換之間保留足夠的穩(wěn)定時(shí)間。
突發(fā)模式特性
Silicon Labs MCU系列產(chǎn)品中兩個(gè)特別有用的特性是突發(fā)模式和標(biāo)記跟蹤模式。突發(fā)模式根據(jù)可編程的連續(xù)ADC轉(zhuǎn)換數(shù)量生成累積的或平均結(jié)果,所有觸發(fā)來自一個(gè)轉(zhuǎn)換請(qǐng)求。標(biāo)記跟蹤模式通過改變轉(zhuǎn)換啟動(dòng)請(qǐng)求操作來分擔(dān)MCU系統(tǒng)所需的跟蹤時(shí)間管理。通常,轉(zhuǎn)換啟動(dòng)標(biāo)記在跟蹤周期終點(diǎn)和轉(zhuǎn)換周期起點(diǎn)。但在標(biāo)記跟蹤模式中,轉(zhuǎn)換啟動(dòng)請(qǐng)求卻在跟蹤周期起點(diǎn)觸發(fā),然后持續(xù)一段時(shí)間,此時(shí)長為基于預(yù)配置的SARADC時(shí)鐘周期的可編程時(shí)長,最后才開始轉(zhuǎn)換。帶有標(biāo)記跟蹤的觸發(fā)模式可為低頻運(yùn)行的MCU在單MCU時(shí)鐘循環(huán)中獲得累積的ADC結(jié)果,因此減少系統(tǒng)循環(huán)數(shù)和降低功耗,如圖3所示。
圖3:ADC突發(fā)模式,在單個(gè)系統(tǒng)時(shí)鐘循環(huán)下實(shí)現(xiàn)4個(gè)數(shù)據(jù)累加。
ADC數(shù)據(jù)窗口
Silicon Labs 8位和32位混合信號(hào)MCU具有ADC輸出數(shù)據(jù)窗口比較器。ADC輸出數(shù)據(jù)與可編程的高低限制進(jìn)行比較,并可為ADC輸出數(shù)據(jù)在設(shè)定的門限值內(nèi)、外、高或低自動(dòng)生成可編程中斷。使用數(shù)據(jù)窗口比較器,設(shè)計(jì)人員能夠配置ADC來自動(dòng)檢查“水池滿”液面監(jiān)測(cè)器輸入,直到數(shù)據(jù)窗口比較器發(fā)出一個(gè)中斷信號(hào)給MCU程序?yàn)橹埂.?dāng)觸發(fā)中斷時(shí),MCU可以中斷當(dāng)前執(zhí)行的任務(wù)并切換到嚴(yán)密控制水池系統(tǒng)的任務(wù)中。
評(píng)論