9位100 MSPS流水線結構A/D轉換器的設計
片上系統(tǒng)(SoC)需要在單個硅片上實現(xiàn)模/數(shù)混合集成。與數(shù)字系統(tǒng)工藝兼容、功耗、面積等指標優(yōu)化的高性能模/數(shù)轉換器(Analog to Digital Converters,ADC)是片上系統(tǒng)中非常重要的單元,它實現(xiàn)了模擬電路與數(shù)字電路之間的聯(lián)系。流水線結構模/數(shù)轉換器(Pipelined ADC)是一種研究和應用非常廣泛的模/數(shù)轉換器,其結構本身并非屬于基本模/數(shù)轉換器結構,但在精度、速度及功耗方面相對于其他類型都有很大的改進,是高速高精度領域的主要應用類型之一。本文介紹了流水線A/D轉換器的基本原理,并構造了一個三級流水線結構的9位100 MSPS A/D轉換器(ADC),采用Zarlink 0.6μm互補雙極工藝模型對電路進行了模擬驗證。
1 三級流水線A/D轉換器電路設計
使用分級技術是解決高速高分辨率的一種方法??梢允褂脙杉壔蚨嗉壐咚?、低分辨率子ADC組合起來,形成一個高速高分辨率的流水線ADC。
1.1 三級流水線A/D轉換器工作原理
在基本A/D轉換結構中,有些具備高速性能,有些具備高精度性能,沒有能夠同時達到高速高精度的要求。流水線ADC的出現(xiàn)在一定程度上解決了這個難題。流水線結構可以在采樣速度和轉換精度之間取得較好的平衡。圖1是三級流水線ADC的結構。
由圖1可知,流水線結構模/數(shù)轉換器主要是由采樣保持器、子ADC、子DAC及減法電路組成。輸入模擬信號首先送入第一個采保電路(TH 1),TH1的輸出信號輸出給第一個的子ADC(ADC1)和第二個采保電路(TH2),ADC1將輸入信號轉換得到高3位數(shù)字信號,該高3位數(shù)據(jù)通過DAC(DA C1)還原成模擬量,再將該模擬量和TH2的輸出一同輸入到減法電路,并將差值由放大器放大一定倍數(shù),便得到第一級模擬余量信號。此模擬余量將作為第二級轉換電路的輸入信號。重復上述步驟,得到次3位轉換數(shù)據(jù),依此類推。
設輸入信號為Vin,Vin通過3位ADC產生的數(shù)字量為Dm,3位DAC輸一模擬量為Vout,則Vin,Dm和Vout的關系由式(1)、(2)決定。
由式(2)可知,3位DAC還原得到的Vout小于等于輸入信號Vin,其差值就是包含低位數(shù)據(jù)位信息的模擬余量。為了使下一單元的ADC得到滿幅輸入,以降低對子ADC性能的要求,還需將此模擬余量乘以ADC量化單位的倒數(shù),即將此模擬余量放大23倍后再送給下一級子轉換器。
1.2 采樣保持電路的設計與分析
圖2為全差分采樣保持電路(T/H電路)的半邊電路;圖3為該T/H電路控制時鐘信號。
當PCLK和NCLK信號為低電平時,T/H電路工作在采樣模式,Q5,Q7導通,Q6,Q8截止,A節(jié)點電壓升高,B節(jié)點電壓降低,這時Q1~Q4均導通且工作在正向放大區(qū),它們形成一個AB類緩沖器驅動保持電容CH。該輸入電路結構具有輸入偏置電流小、輸入阻抗高、交調失真小的特點。當PCLK和NCLK信號為高電平時,T/H電路工作在保持模式,Q5,Q7截止,Q6,Q8導通,鉗位電路(CLAMP)開始作用,使A節(jié)點電壓鉗位在VCH-VthN,使B結點的電壓鉗位在VCH+VthP(VthN和Vthp分別表示NPN管和PNP管的BE結導通屯壓),也使A,B兩節(jié)點呈現(xiàn)為低阻抗節(jié)點。此時Q1~Q4均截止,故而形成輸入信號與保持電容之間的二重隔離,消除保持模式的信號饋通。
RC和CH構成一個低通濾波器,其截止頻率會隨負載而變化。為克服這一缺點,在輸出端設計一個輸出緩沖器。采樣/保持電路的噪聲特性主要來自于Q1~Q4的基極寄生電阻熱噪聲以及它們的散粒噪聲和帶寬限制電阻RC熱噪聲。電路設計時,選用大尺寸的器件來減小基極電阻Rb,使得基極寄生電阻熱噪聲最小化。將Q3,Q4偏置在較大的靜態(tài)電流來最小化它們的散粒噪聲,同時采樣模式動態(tài)特性也要求Q3,Q4有大的靜態(tài)電流,以減小VBE調制的影響。當該T/H電路被偏置在大電流時,它將有大的帶寬,因此必須串聯(lián)電阻RC來限制帶寬以濾除高頻噪聲。大的偏置電流也要在功耗和性能之間進行折衷考慮。
評論