飛機狀況監(jiān)視能量收集的實現方案
圖2 LTC3108用于無線遠端傳感器應用,該應用由熱電發(fā)生器供電(Peltier Cell)
LTC3108用一個耗盡型 N 溝道 MOSFET 開關形成升壓型諧振振蕩器,該振蕩器使用一個外部升壓型變壓器和一個小型耦合電容器。這允許該器件將低至 20mV 的輸入電壓升高到足夠高,以提供多個穩(wěn)定輸出電壓,以給其它電路供電。振蕩頻率主要由變壓器次級繞組的電感和 LTC3108 的輸入電容決定,一般在 20kHz至200kHz的范圍內。
就低至 20mV 的輸入電壓而言,推薦約為 1:100 的初-次級匝數比。就更高的輸入電壓而言,可以采用較低的匝數比,因為這將提供更大的輸出功率。這些變壓器是標準的組件,可以非常方便地從磁性組件供應商那里得到。凌力爾特公司的復合耗盡型 N 溝道 MOSFET 是 20mV 工作得以實現的關鍵因素。
如圖 3 所示,LTC3108 采用一種“系統級”方法來解決一個復雜問題。它可以轉換低壓源,并管理多個輸出之間的能量。
圖3 LTC3108 方框圖
利用一個外部充電泵電容器 (從次級繞組到引腳 C1) 和 LTC3108 內置的整流器來升高變壓器次級繞組上產生的 AC 電壓并對其整流。整流器電路將電流饋送進 VAUX 引腳,向外部 VAUX 電容器提供電荷,然后向其它輸出。
內部 2.2V LDO 可以支持一個低功率處理器或其它低功率 IC。該 LDO 由VAUX 或 VOUT中電壓值更高的一個供電。這使它能夠在 VAUX一充電至 2.3V 時就工作,同時VOUT存儲電容器仍然在充電。倘若 LDO輸出出現階躍負載, VAUX降至低于VOUT,電流就可以來自主 VOUT電容器。LDO輸出可以提供高達 3mA 的電流。
VOUT上的主輸出電壓靠 VAUX 電源充電,是用戶可編程的,可用電壓選擇引腳 VS1 和 VS2 編程設定為 4 個穩(wěn)定電壓之一。4 個固定輸出電壓是:用于超級電容器的 2.35V、用于標準電容器和 RF 或傳感器電路的 3.3V、用于鋰離子電池終止的 4.1V以及用于更高能量存儲和主系統軌以給無線發(fā)送器或傳感器供電的 5V,從而無須多兆歐外部電阻器。結果,LTC3108 不需要特殊的電路板涂層以最大限度地減少泄漏,而分立式設計不僅需要特殊的電路板涂層,還需要電阻值非常大的電阻器。
第二個輸出 VOUT2可以由主微處理器利用 VOUT2_EN引腳接通或斷開。啟動工作后,VOUT2 通過一個 P 溝道 MOSFET 開關連接到 VOUT。這個輸出可以用來給外部電路供電,如沒有低功率休眠或停機功能的傳感器或放大器。這種應用的一個例子是,給建筑物自動調溫器內檢測電路組成部分的 MOSFET 供電,使其接通和斷開。
VSTORE 電容器的值也許非常大 (數千微法甚至數法拉),以在失去輸入電源時提供延遲。一旦加電完成,主、備份和開關輸出就都可用了。如果輸入電源出故障,那么仍可繼續(xù)運行,這時靠 VSTORE 電容器運行。在 VOUT 達到穩(wěn)定狀態(tài)以后,VSTORE 輸出可以用來給一個大的存儲電容器或可再充電電池充電。一旦 VOUT 達到穩(wěn)定狀態(tài),那么就允許 VSTORE 輸出充電至高達 VAUX 電壓,該電壓箝位在 5.3V。VSTORE 上的存儲組件不僅可在失去輸入源時用來給系統供電,而且還可在輸入源能量不充足時用來補充 VOUT、VOUT2 和 LDO 輸出需要的電流。一個電源良好比較器監(jiān)視 VOUT 電壓。一旦 VOUT 充電至其穩(wěn)定電壓的 7% 范圍內,PGOOD 輸出就會變高。如果 VOUT 從其穩(wěn)定電壓下降超過 9%,PGOOD 將會變低。PGOOD 輸出設計成驅動一個微處理器或其它芯片 I/O,而不驅動 LED 等較高電流的負載。
圖 4 所示電路利用一個小的壓電換能器將機械振動轉換成一個 AC 電壓源,該電壓源饋送進 LTC3588-1 的內部橋式整流器。它可以從小的振動源收集能量,并產生系統電源,而無需使用傳統的電池電源。
圖4 將振動或壓力源轉換成電流的LTC3588-1的電路原理圖
表1:熱源、電壓源兩種方法優(yōu)缺點比較
LTC3588-1 是一種超低靜態(tài)電流電源,專門為能量收集/低電流降壓型應用而設計。它可以直接連接到一個壓電或可供替代的 AC 電源,對電壓波形整流并在一個外部電容器中存儲收集的能量,通過一個內部并聯穩(wěn)壓器泄放任何多余的功率,并通過亳微功率高效率降壓型穩(wěn)壓器保持穩(wěn)定的輸出電壓。
LTC3588-1 的內部全波橋式整流器可通過兩個差分輸入 PZ1 和 PZ2 接入,對 AC 輸入整流。整流后的輸出再存儲到 VIN 引腳處的電容器上,并可用作降壓型轉換器的能量庫。在典型的壓電產生電流的情況下,低通橋式整流器具有大約 400mV 的總壓降,壓電產生的電流通常為 10µA 左右。這種橋能夠攜帶高達 50mA 的電流。一旦在 VIN 上有充足的電壓,就啟動降壓型穩(wěn)壓器,以產生一個穩(wěn)定輸出。
降壓型穩(wěn)壓器采用遲滯電壓算法,以通過來自 VOUT 檢測引腳的內部反饋控制輸出。降壓型轉換器通過電感器將一個輸出電容器充電至略高于穩(wěn)定點的值。它通過以下方法做到這一點:通過一個內部PMOS開關使電感器電流斜坡上升至260mA,然后再通過一個內部NMOS 開關使其斜坡下降至0mA,因此可高效率地向輸出電容器提供能量。它提供穩(wěn)定輸出的遲滯方法降低了與 FET 切換有關的損耗,并在輕負載時保持輸出。降壓型轉換器在它切換時提供最小100mA 的平均負載電流。
結論
就能源選擇而言,在熱源和壓電源之間存在權衡問題。表1總結了這兩種方法的優(yōu)缺點。
由于全世界都缺乏模擬開關模式電源設計專長,設計一個有效的能量收集系統一直都很難,如圖 1 所示。不過,隨著 LTC3108 和 LTC3588-1 的推出,這種狀況將為之改觀。這些器件幾乎可以從任何熱源或機械振動源抽取能量,而熱源和機械振動源在飛機環(huán)境中是常見的。此外,這些器件具有全面的功能并易于設計,因此它們極大地簡化了能量收集鏈中難以實現的電源轉換設計。對于飛機狀況監(jiān)視系統設計師來說,這是個好消息,因為這些器件具有高集成度,包括電源管理控制和現成有售的外部組件,就形成完整能量收集鏈而言,這使它們成為最小、最簡單和最易于使用的可用解決方案。
評論