新聞中心

EEPW首頁 > EDA/PCB > 設計應用 > 基于振蕩器采樣法的隨機數(shù)發(fā)生器設計

基于振蕩器采樣法的隨機數(shù)發(fā)生器設計

作者: 時間:2012-03-07 來源:網(wǎng)絡 收藏

在保障互聯(lián)網(wǎng)安全的各種加密算法中,隨機數(shù)產(chǎn)生至關重要。產(chǎn)生隨機數(shù)的方法有多種,其中最適于構建SoC設計所需的。本文介紹的工作原理,并概述在具體使用這種時應注意的事項。
隨著許多企業(yè)的網(wǎng)絡應用從內(nèi)部網(wǎng)擴展到公眾互聯(lián)網(wǎng),對虛擬專用網(wǎng)絡(VPN)設備的需求也開始逐漸上升。為了服務于這個市場,半導體廠商推出了一些專用產(chǎn)品,把所有必需安全功能都集成在一個器件里面。

本文引用地址:http://butianyuan.cn/article/190678.htm

專用于互聯(lián)網(wǎng)協(xié)議安全(IPsec)的AES和3DES類加密/解密算法以及SHA1和MD5等散列算法已廣為人知并得到普遍重視,然而,保證VPN系統(tǒng)安全的關鍵在于生成隨機數(shù)的能力,但這點卻常常被忽視。

隨機數(shù)是許多加密應用的基礎,其作用是生成Diffie-Hellman、Rivest-Shamir-Adelman和數(shù)字簽名等算法所需的公共/專用密鑰對,并為大批量加密算法和IPsec分別生成初始向量和即時隨機數(shù),此外,大量其它類型的安全協(xié)議也靠的不可預測性來防止系統(tǒng)被破解。常用一些復雜數(shù)學函數(shù)生成高質量偽(PRNG)位流,但事實證明有很多途徑可以攻擊用PRNG加密的系統(tǒng),因此加密安全系統(tǒng)需要使用更高質量的隨機數(shù)發(fā)生器。

在明確了這些需求之后,到底有沒有一種真正的隨機數(shù)發(fā)生器可以根據(jù)非確定噪聲源產(chǎn)生隨機數(shù),并特別適用于系統(tǒng)級芯片(SoC)設計呢?大多數(shù)隨機數(shù)發(fā)生器方案通??梢詺w為三大類,即直接放大、離散時間混沌和振蕩器采樣。前兩種方法更適用于客戶定制的單元設計,因為在這些場合設計人員可以控制實際電路的布局;而振蕩器采樣技術可以作為標準單元設計流程的一部分,因此在SoC設計中很流行。不過設計人員即使選用了振蕩器技術,仍然有許多實施問題需要仔細考慮。圖1:直接放大技術中噪聲源經(jīng)過定時比較器的放大和限幅,產(chǎn)生一個隨機數(shù)序列。

隨機數(shù)生成技術

直接放大技術使用高增益高帶寬放大器來處理由熱噪聲或散射噪聲引起的電壓變化。例如可采用N阱電阻對將其熱噪聲轉換成一個電壓變化信號,然后以抖動的形式輸入隨機數(shù)發(fā)生器模塊微系統(tǒng)中(圖1)。采用這種方法時設計人員必須要考慮其它一些因素,如系統(tǒng)熱噪聲通常與基底噪聲及電源電壓波動等局部特征耦合在一起,如果電路沒有正確屏蔽,這些因素便會使熱噪聲源的隨機性受到影響。克服這種現(xiàn)象的方法是對一對鄰近的電阻進行采樣,再對結果求差以減少其它噪聲源的影響。

離散時間混沌法使用模擬信號處理技術產(chǎn)生隨機位流。這種方式下,隨機性不是從熱噪聲源獲得,而是從非常穩(wěn)定的動態(tài)變化中得到,其系統(tǒng)設計與模/數(shù)轉換器性質類似。在傳統(tǒng)的A/D轉換器中,殘余信號經(jīng)過采樣和保持,再饋送到A/D轉換器的輸入端(圖2)。一般來說,單是這種技術本身尚不足以產(chǎn)生隨機序列,因為電路的不準確性限制了A/D轉換分辨率,也降低了系統(tǒng)產(chǎn)生隨機序列的能力。因此,為獲得非確定隨機性,這種技術常常要與其它技術配合使用。圖2:離散時間混沌采用模擬信號處理技術來產(chǎn)生非確定位流。

目前,隨機數(shù)發(fā)生器(RNG)設計中最流行的方法是振蕩器(圖3),其基本設計思想是利用兩個獨立工作的高、低頻振蕩器之間的相對關系來得到非確定噪聲源,用高抖動低頻振蕩器采樣高頻振蕩器,從而產(chǎn)生隨機數(shù)序列。在數(shù)字電路中,低頻方波源可作為一個正沿觸發(fā)D觸發(fā)器的時鐘,高頻方波源則作為觸發(fā)器的數(shù)據(jù)輸入,并在時鐘脈沖的上升沿對其進行采樣。

在該系統(tǒng)中,產(chǎn)生隨機數(shù)的關鍵元件是低頻振蕩器,因為它的設計具有頻率不穩(wěn)定性,即抖動,而且低頻與高頻之比經(jīng)過仔細選擇可以符合一定條件。設計中最重要的是低頻振蕩器的抖動量,這個抖動就是隨機源。頻率不穩(wěn)定性可以是此類振蕩器的一個功能,也可由另一個非確定噪聲源直接“植入”,因此可以說,正是采樣時鐘相對于高頻數(shù)據(jù)輸入的相位變化保證了可以獲得隨機位流。圖3:振蕩器采樣法利用兩個自由工作振蕩器之間的相位差來產(chǎn)生隨機性。

如果兩個振蕩器在工作過程中都不發(fā)生漂移,那么采樣得到的位流便具有周期性而且可以預測,這種周期性和通常稱為節(jié)拍頻率的頻率比有關。此外,兩個振蕩器的頻率比對所產(chǎn)生的位流有著非常重要的影響。多項研究表明,為了保證高度隨機性,低頻振蕩器周期變化標準差的兩倍與高頻振蕩器周期之比應該大于3:2,否則位碼之間便會存在明顯的相關性,以致于后面的位將比其前面的位更容易預測。

使用振蕩器采樣法

選用振蕩器采樣法來設計隨機數(shù)發(fā)生器的設計人員還必須考慮其它一些實施問題,所選振蕩器的類型也會影響整個系統(tǒng)設計的固有隨機性。此外,為了保證相關噪聲源不會降低系統(tǒng)隨機性,必須仔細選擇振蕩器,這必然又會增加器件電路布局的復雜性。作為一種補償,可采用數(shù)字后處理技術來降低設計風險并保留系統(tǒng)的隨機性。

在考慮實施振蕩器采樣法時,設計人員可從幾種不同類型的振蕩器中進行選擇,包括差分振蕩器、單端振蕩器及混合振蕩器,不同類型振蕩器對不同噪聲源的敏感度也不一樣。顯而易見,不同振蕩器的特性比較需要豐富的知識,本文在此只作簡單討論。

通常,差分振蕩器對電源及基底噪聲的敏感度不如單端振蕩器。這是因為差分放大器對的電源和接地點會同時出現(xiàn)電壓擺動,所以兩個輸入之間的差值保持一致,輸出也一致,呈現(xiàn)出較高的共模抑制比(CMRR)。差分邏輯常用于模擬邏輯壓控振蕩器設計中,例如鎖相環(huán)中的振蕩器,因為鎖相環(huán)需要較高的CMRR,所以差分振蕩器方案并不特別適用于那些需要非確定噪聲源的設計。另一方面,單端反相振蕩器極易受電壓擺動或輸入信號中直流分量的影響,如果噪聲對電平帶來任何波動,都會影響振蕩器的抖動。此外,差分、感容及張弛振蕩器設計需要客戶定制的電路布局,所以無法集成到標準單元的SoC設計中。因此,在SoC設計中最簡單直接的解決方案通常是單端環(huán)形振蕩器(圖4)。圖4:單端環(huán)形振蕩器對噪聲很敏感,這點可在隨機數(shù)發(fā)生器中加以利用。

盡管單端環(huán)形振蕩器有這樣的優(yōu)勢,在選用時還是有一些復雜因素必須考慮。由于高速數(shù)字系統(tǒng)存在切換動作,因此熱噪聲與電源/基底噪聲相比一般可以忽略不計。電源和基底噪聲是引起噪聲耦合的主要原因,噪聲耦合的振蕩器在反相電路中會產(chǎn)生δ延遲。電源電壓變化或來自基底耦合的噪聲會改變每級電路輸出節(jié)點的電容,從而使振蕩器的總頻率不斷改變。此外,除熱噪聲外,所有環(huán)形振蕩器延遲電路級中的電源和基底噪聲都是相關的,所以如果沒有牢靠的接地環(huán)保護電路,設計人員都不希望讓兩個振蕩器電路靠得太近。如果屏蔽不是很好,會造成兩個位流源之間的隨機性相互關聯(lián)。在最終的振蕩器設計中,所有這些因素都必須要考慮到。

此外,就算設計人員有良好的意愿,實施方案也可能無法產(chǎn)生真正的隨機位流。設計人員或許要借助一些成本高昂的額外測試來保證隨機數(shù)發(fā)生器系統(tǒng)能產(chǎn)生期望的結果。如前所述,隨機性主要來自電源和基底噪聲與振蕩器電路的耦合,由于這些振蕩器會耦合同一個噪聲源,因此設計人員不希望將它們靠得太近。進一步來說,如果兩個振蕩器鎖定在同一個噪聲源上并相互耦合,那么它們之間的相關性也會增加,從而使兩個源的隨機輸出相互關聯(lián)。如果在最終布局上將兩個振蕩器分開,電源和基底噪聲的相關效應便可減輕。

采用振蕩器采樣法的一種常見做法是多設計一對振蕩器,萬一主隨機源失效了,它還可以降低RNG系統(tǒng)沒有非確定性噪聲源的風險,隨后通過一個強大的混合函數(shù)將采樣位流進行混合,以便保留各個源固有的隨機性,這一點將在后面詳述。為了從混合位流中獲得更好的隨機性,必須給各振蕩器選擇一個獨特的主標稱頻率,或者使其頻率能夠調節(jié),這可盡量減少多個源之間的互相關性。當然,設計者必須權衡考慮,要么接受額外成本,要么承擔不能生成真正隨機數(shù)的風險。


上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉