新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 如何進(jìn)行應(yīng)用電路板的多軌電源設(shè)計(jì)

如何進(jìn)行應(yīng)用電路板的多軌電源設(shè)計(jì)

作者: 時(shí)間:2024-05-10 來源: 趣說生活家 收藏

緊迫的時(shí)間表有時(shí)會(huì)讓工程師忽略除了VIN、VOUT和負(fù)載要求等以外的其他關(guān)鍵細(xì)節(jié),將PCB應(yīng)用的電源設(shè)計(jì)放在事后再添加。遺憾的是,后續(xù)生產(chǎn)PCB時(shí),之前忽略的這些細(xì)節(jié)會(huì)成為難以診斷的問題。例如,在經(jīng)過漫長(zhǎng)的調(diào)試過程后,設(shè)計(jì)人員發(fā)現(xiàn)電路會(huì)隨機(jī)出現(xiàn)故障,比如,因?yàn)殚_關(guān)噪聲,導(dǎo)致隨機(jī)故障的來源則很難追查。

本文引用地址:http://butianyuan.cn/article/202405/458556.htm

此專題分兩部分討論,本文是第一部分,主要介紹在設(shè)計(jì)時(shí)可能會(huì)忽略的一些問題。第一部分著重介紹策略和拓?fù)?,第二部分重點(diǎn)討論功率預(yù)算和電路板布局的細(xì)節(jié),以及一些設(shè)計(jì)技巧。許多都使用電源來偏置多個(gè)邏輯電平,本系列文章將探討多電源電路板解決方案。旨在實(shí)現(xiàn)首次即正確的設(shè)計(jì)拓?fù)浠虿呗浴?/p>

選擇繁多

對(duì)于特定的電源設(shè)計(jì),可能有多種可行的解決方案。在下面的示例中,我們將介紹多種選擇,例如單芯片電源與多電壓軌集成電路(IC)。我們將評(píng)估成本和性能取舍。探討低壓差(LDO)穩(wěn)壓器與開關(guān)穩(wěn)壓器(一般稱為降壓或升壓穩(wěn)壓器)之間的權(quán)衡考量。還將介紹混合方法(即LDO穩(wěn)壓器和降壓穩(wěn)壓器的混合與匹配),包括電壓輸入至輸出控制(VIOC)穩(wěn)壓器解決方案。

在本文中,我們將分析開關(guān)噪聲,以及在開關(guān)電源設(shè)計(jì)無法充分濾波時(shí),PCB電路會(huì)受哪些影響。從總體設(shè)計(jì)角度來看,還需考慮成本、性能、實(shí)施和效率等因素。

例如,如何根據(jù)給定的一個(gè)或多個(gè)電源實(shí)現(xiàn)多電源拓?fù)鋬?yōu)化設(shè)計(jì)?我們將藉此深入探討設(shè)計(jì)、IC接口技術(shù)、電壓閾值電平,以及哪類穩(wěn)壓器噪聲會(huì)影響電路。我們將分析一些基本邏輯電平,例如5 V、3.3 V、2.5 V和1.8 V晶體管-晶體管邏輯(TTL)、互補(bǔ)金屬氧化物半導(dǎo)體(CMOS),及其各自的閾值要求。

本文還會(huì)提及正發(fā)射極耦合邏輯(PECL)、低壓PECL(LVPECL)和電流模式邏輯(CML)等先進(jìn)邏輯,但不會(huì)詳細(xì)介紹。這些都是超高速接口,對(duì)于它們來說,低噪聲電平非常重要。設(shè)計(jì)人員需要知道如何避免信號(hào)擺幅引起的這些問題。

在電源設(shè)計(jì)中,成本和性能要求并存,所以設(shè)計(jì)人員必須仔細(xì)考慮邏輯電平和對(duì)干凈電源的要求。在公差和噪聲方面,通過設(shè)計(jì)實(shí)現(xiàn)可靠性并提供適當(dāng)裕量,也可以避免生產(chǎn)問題。

設(shè)計(jì)人員需要了解與電源設(shè)計(jì)相關(guān)的權(quán)衡考量:哪些可實(shí)現(xiàn)?哪些可接受?如果設(shè)計(jì)達(dá)不到要求的性能,那么設(shè)計(jì)人員必須重新審視選項(xiàng)和成本,以滿足規(guī)格要求。例如,多軌器件(例如ADI公司的ADP5054)可以在保持成本高效的同時(shí)提供所需的性能優(yōu)勢(shì)。

典型設(shè)計(jì)示例

我們先來舉個(gè)設(shè)計(jì)示例。圖1顯示將12 V和3.3 V輸入電源作為主電源的電路板框圖。主電源必須降壓,以便針對(duì)PCB應(yīng)用產(chǎn)生5 V、2.5 V、1.8 V,甚至3.3 V電壓。如果外部3.3 V電源能夠提供足夠的電源和低噪聲,那么可以直接使用3.3 V輸入電軌,無需額外調(diào)節(jié),以免產(chǎn)生額外成本。如果不能,則可以使用12 V輸入電軌,通過降壓至PCB應(yīng)用所需的3.3 V來滿足電源要求。

圖1.需要解決方案的概覽

邏輯接口概述

PCB一般使用多個(gè)電源。IC可能僅使用5 V電源;或者,它可能要求多個(gè)電源,輸入/輸入接口使用5 V和3.3 V,內(nèi)部邏輯使用2.5 V,低功耗休眠方式使用1.8 V。低功耗模式可能始終開啟,用于定時(shí)器功能、管理等邏輯,或用于中斷時(shí)啟用喚醒模式,或者用于IRQ引腳,以啟用IC功能并為其供電,也就是5 V、3.3 V和2.5 V電源。所有這些或其中部分邏輯接口通常都在IC內(nèi)部。

圖2顯示了標(biāo)準(zhǔn)邏輯接口電平,包括各種TTL和CMOS閾值邏輯電平,以及它們可接受的輸入和輸出電壓邏輯定義。在本文中,我們將討論何時(shí)將輸入邏輯驅(qū)動(dòng)至低電平(用輸入電壓低(VIL)表示),何時(shí)驅(qū)動(dòng)至高電平(用輸入邏輯電平高(VIH)表示)。我們將重點(diǎn)分析VIH,即圖2中標(biāo)記為“Avoid”的閾值不確定區(qū)域。

在所有情況下,必須考慮±10%的電源公差。圖3顯示了高速差分信號(hào)。本文將著重探討圖2所示的標(biāo)準(zhǔn)邏輯電平。

開關(guān)噪聲

未經(jīng)過充分濾波時(shí),開關(guān)穩(wěn)壓器降壓或升壓電源設(shè)計(jì)可能產(chǎn)生幾十毫伏至幾百毫伏的開關(guān)噪聲,尖峰可能達(dá)到400 mV至600 mV。所以,了解開關(guān)噪聲是否會(huì)給使用的邏輯電平和接口造成問題非常重要。

安全裕度

為確保提供合適的安全裕度,實(shí)現(xiàn)可靠的PSU,一條設(shè)計(jì)經(jīng)驗(yàn)法則是采用最糟糕情況下的–10%公差。例如,對(duì)于5 V TTL,0.8 V的VIL變成0.72 V,對(duì)于1.8 V CMOS,0.63 V的VIL變成0.57 V,閾值電壓(VTH)也相應(yīng)降低(5 V TTL VTH = 1.35 V,1.8 V CMOS VTH = 0.81 V)。開關(guān)噪聲(VNS)可能為幾十毫伏到幾百毫伏。此外,邏輯電路本身也會(huì)產(chǎn)生信號(hào)噪聲(VN),即干擾噪聲??傇肼曤妷?VTN = VN + VNS)可能在100 mV至800 mV之間。將VTN添加至標(biāo)稱信號(hào)中,以生成總信號(hào)電壓(VTSIG):實(shí)際的總信號(hào)(VTSIG = VSIG + VTN)會(huì)影響閾值電壓(VTH),進(jìn)一步擴(kuò)大了avoid區(qū)域。VTH區(qū)域內(nèi)的信號(hào)電平是不確定的,在該區(qū)域內(nèi),邏輯電路可以任意隨機(jī)翻轉(zhuǎn);例如,在最糟糕的情形下,會(huì)錯(cuò)誤觸發(fā)邏輯1,而不是邏輯0。

多軌PSU注意事項(xiàng)和提示

通過了解接口輸入和IC內(nèi)部邏輯的閾值電平,我們現(xiàn)在知道哪些電平會(huì)觸發(fā)正確的邏輯電平,哪些會(huì)(意外)觸發(fā)錯(cuò)誤的邏輯電平。問題在于:要滿足這些閾值,電源的噪聲性能需要達(dá)到什么水平?低壓差線性穩(wěn)壓器噪聲很低,但在高壓降比下卻并不一定高效。開關(guān)穩(wěn)壓器可以有效降壓,但會(huì)產(chǎn)生一些噪聲。高效低噪的電源系統(tǒng)應(yīng)包含這兩種電源的組合。本文著重介紹各種組合,包括在開關(guān)穩(wěn)壓器后接LDO穩(wěn)壓器的混合方法。

(在需要時(shí))最大化效率和最小化噪聲的方法1, 2

從圖1所示的設(shè)計(jì)示例可以看出,為了充分提高5 V穩(wěn)壓的效率并盡可能降低開關(guān)噪聲,需要分接12 V電路并使用降壓穩(wěn)壓器,例如ADI公司的ADP2386。從標(biāo)準(zhǔn)邏輯接口電平來看,5 V TTL VIL和5 V CMOS VIL分別是0.8 V和1.5 V,僅使用開關(guān)穩(wěn)壓器時(shí),也具備適當(dāng)?shù)脑6?。?duì)于這些電軌,通過使用降壓拓?fù)淇蓪?shí)現(xiàn)效率最大化,而開關(guān)噪聲則低于采用5 V(TTL和CMOS)技術(shù)時(shí)的VIL。通過使用降壓穩(wěn)壓器(例如圖4a所示的ADP2386配置),效率可以高達(dá)95%,如ADP2386的典型電路和效率曲線圖所示(見圖4b)。如果在此設(shè)計(jì)中使用噪聲較低的LDO穩(wěn)壓器,從VIN到VOUT的7 V壓降會(huì)導(dǎo)致消耗大量?jī)?nèi)部功率,一般表現(xiàn)為產(chǎn)生熱量和損失效率。為了以少量額外成本實(shí)現(xiàn)可靠設(shè)計(jì),在降壓穩(wěn)壓器后接LDO穩(wěn)壓器來產(chǎn)生5 V電壓也是一項(xiàng)額外優(yōu)勢(shì)。

2.5 V和1.8 V CMOS的VIL分別是0.7 V和0.63 V。遺憾的是,此邏輯電平的安全裕度尚不足以避免開關(guān)噪聲。要解決此問題,有兩種方案可選。第一種:如果圖1所示的外部3.3 V電源具備足夠功率且噪聲極低,則分接這個(gè)外部3.3 V電源,并使用線性穩(wěn)壓器(LDO穩(wěn)壓器),例如ADP125(圖5)或ADP1740來獲得2.5 V和1.8 V電源。注意,從3.3 V到1.8 V有1.5 V壓降。如果此壓降會(huì)導(dǎo)致問題,則可以使用混合方法。第二種:如果外部3.3 V電源的噪聲不低,或不能提供足夠功率,則分接12 V電源,通過降壓穩(wěn)壓器后接LDO穩(wěn)壓器來產(chǎn)生3.3 V、2.5 V和1.8 V電源;混合方法如圖6所示。

加入LDO穩(wěn)壓器會(huì)稍微增加成本和板面積以及少量散熱,但要實(shí)現(xiàn)安全裕度,有必要作出這些取舍。使用LDO穩(wěn)壓器會(huì)小幅降低效率,但可以通過保持VIN至VOUT的少量壓降,使這種效率降幅達(dá)到最低:3.3 V至2.5 V,保持0.8 V,或3.3 V至1.8 V,保持1.5 V??梢允褂脦IOC功能的穩(wěn)壓器盡可能提高效率和瞬變性能。VIOC可以調(diào)節(jié)上游開關(guān)穩(wěn)壓器的輸出,從而在LDO穩(wěn)壓器兩端保持合理的壓降。帶VIOC功能的穩(wěn)壓器包括LT3045、LT3042和LT3070-1。

LT3070-1是ADI公司一款5 A、低噪聲、可編程輸出、85 mV低壓差線性穩(wěn)壓器。如果必須使用LDO穩(wěn)壓器,則存在散熱問題,其中功耗= VDROP × I。例如,LT3070-1支持3 A,穩(wěn)壓器兩端的功率降幅(或功耗)典型值為3 A × 85 mV = 255 mW。相比壓差為400 mV,輸出電流同樣為3 A,功耗為1.2 W的一些典型LDO穩(wěn)壓器,LT3070-1的功耗僅為其五分之一。

或者,我們可以使用混合方法,以犧牲成本為代價(jià)來提高效率。圖6中效率和性能均得到優(yōu)化,其中先使用降壓穩(wěn)壓器(ADP2386)將電壓降至允許的最低電壓,盡量提高效率,后接一個(gè)LDO穩(wěn)壓器(ADP1740)。

圖6.使用ADP2386和ADP1740組合的混合拓?fù)?/p>

圖7.適合FPGA應(yīng)用的ADP5054單芯片解決方案

1 此練習(xí)提供一個(gè)通用設(shè)計(jì)示例,用于顯示一些拓?fù)浜图夹g(shù)。但是,也不能忘記考慮其他因素,例如IMAX、成本、封裝、壓降等。

2 也提供低噪聲降壓和升壓穩(wěn)壓器選項(xiàng),例如Silent Switcher? 穩(wěn)壓器,它具備極低的噪聲和低EMI。例如,從性能、封裝、尺寸和布局區(qū)域來看,LT8650S 和LTC3310S具有成本高效特性。

封裝、功率、成本、效率和性能取舍

量產(chǎn)PCB設(shè)計(jì)通常要求使用緊湊的多軌電源,以實(shí)現(xiàn)高功率、高效率、出色的性能和低噪聲。例如,ADP5054四通道降壓穩(wěn)壓器為FPGA等應(yīng)用提供高功率(17 A)單芯片多軌電源解決方案,如圖7所示。整個(gè)電源解決方案約41 mm × 20 mm大小。ADP5054本身的大小僅為7 mm × 7 mm,可以提供17 A總電流。要在緊湊空間內(nèi)實(shí)現(xiàn)極高的功率電平,可以考慮使用ADI公司的μModule? 穩(wěn)壓器,例如LTM4700,可以在15 mm × 22 mm的封裝大小內(nèi)提供高達(dá)100 A電流。




評(píng)論


技術(shù)專區(qū)

關(guān)閉