新聞中心

EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 降低半導(dǎo)體金屬線(xiàn)電阻的沉積和刻蝕技術(shù)

降低半導(dǎo)體金屬線(xiàn)電阻的沉積和刻蝕技術(shù)

—— 使用SEMulator3D可視性沉積和刻蝕功能研究金屬線(xiàn)制造工藝,實(shí)現(xiàn)電阻的大幅降低
作者:泛林集團(tuán)Semiverse Solutions部門(mén)軟件應(yīng)用工程師Timothy Yang博士 時(shí)間:2024-08-16 來(lái)源:EEPW 收藏


本文引用地址:http://www.butianyuan.cn/article/202408/462075.htm

1723777298343811.png

01 介紹

銅的電阻率由其晶體結(jié)構(gòu)、空隙體積、晶界和材料界面失配決定,并隨尺寸縮小而顯著提升。通常,銅線(xiàn)的制作流程是用溝槽刻蝕工藝在低介電二氧化硅里刻蝕溝槽圖形,然后通過(guò)大馬士革流程用銅填充溝槽。但這種方法會(huì)生出帶有明顯晶界和空隙的多晶結(jié)構(gòu),從而增加銅線(xiàn)電阻。為防止大馬士革退火工藝中的銅擴(kuò)散,此工藝還使用了高電阻率的氮化鉭內(nèi)襯材料。

我們可以使用物理氣相沉積 (PVD) 以10至100電子伏特的高動(dòng)能沉積銅,得到電阻低、密度高的單晶結(jié)構(gòu)。但PVD的局限在于覆蓋性比較差,且只能在平面上均勻沉積,不能用于填充深孔或溝槽(圖1a)。

要得到獨(dú)立的金屬線(xiàn),首先需要在平面上沉積均勻的銅層,隨后用離子束進(jìn)行物理刻蝕。銅與活性氣體不產(chǎn)生揮發(fā)性化合物,因此不能使用反應(yīng)離子刻蝕工藝。如果入射角非常高,離子束刻蝕 (IBE) 中產(chǎn)生的加速氬離子可以去除銅。但由于掩膜結(jié)構(gòu)的遮擋效應(yīng),可刻蝕的區(qū)域?qū)?huì)受限。圖1b展示了當(dāng)掩膜垂直于入射離子束時(shí)的不可刻蝕區(qū)域(紅色),這是由于掩膜遮擋導(dǎo)致的原子噴射路徑受阻所造成的。當(dāng)掩膜與離子路徑平行時(shí),所有未被掩蓋的區(qū)域都能被刻蝕。因此,IBE僅限于刻蝕任意長(zhǎng)度的線(xiàn)形掩膜。

image.png

image.png

02 工藝步驟與虛擬制造工藝

為了解沉積與刻蝕對(duì)線(xiàn)電阻的影響,我們使用SEMulator3D?可視性沉積和刻蝕功能模擬PVD和IBE工藝。借助SEMulator3D,我們使用30°分散角的可視性沉積工藝再現(xiàn)PVD,該流程準(zhǔn)確模擬出轟擊中噴射出的銅原子與氬離子的隨機(jī)狀態(tài)。同時(shí),我們使用2°分散角與60°傾斜角的可視性刻蝕模擬出IBE,實(shí)現(xiàn)以較低的離子束發(fā)散反映網(wǎng)格加速離子的行為。兩個(gè)模擬都將晶圓視為在工藝過(guò)程中自由旋轉(zhuǎn),并為適應(yīng)IBE和PVD的局限之處,對(duì)其他工藝步驟進(jìn)行了調(diào)整。圖2展示了使用大馬士革銅填充工藝(圖2a)和PVD/IBE工藝(圖2b)創(chuàng)建出的相同結(jié)構(gòu)。為適應(yīng)PVD/IBE的某些局限之處,并為所需的最終結(jié)構(gòu)創(chuàng)建相同的形狀,我們還加入了額外的工藝步驟。

1723777378472611.png

實(shí)驗(yàn)證明,即使存在這些局限,依然可以用PVD/IBE線(xiàn)制造出同等的16nm SRAM(靜態(tài)隨機(jī)存取存儲(chǔ)器)電路單元。所有線(xiàn)路中段以上的金屬層都在平面上制作,所以它優(yōu)于FinFET(鰭式場(chǎng)效應(yīng)晶體管)器件復(fù)雜的互連拓?fù)浣Y(jié)構(gòu),是PVD/IBE金屬線(xiàn)的可選方案。圖3展示了每個(gè)金屬層的獨(dú)立結(jié)構(gòu),以及使用PVD/IBE制作三層金屬FinFET結(jié)構(gòu)的必要步驟。

1723777400433609.png

1723777421271120.png

圖3 a和b展示了每個(gè)金屬層的獨(dú)立結(jié)構(gòu),以及使用PVD/IBE創(chuàng)建三層金屬FinFET結(jié)構(gòu)的必要步驟

●   圖3a:左圖展示成型的中段制程16nm FinFET結(jié)構(gòu),右圖展示具有三個(gè)完整金屬層的FinFET結(jié)構(gòu)。中段制程之后表面是平坦的,銅PVD和IBE可以在該步驟進(jìn)行。

●   圖3b:該圖展示了用PVD/IBE制造每個(gè)金屬層的步驟,并演示出在PVD和IBE存在局限的情況下為制造三個(gè)金屬層探索工藝和集成路徑的過(guò)程。每層都有相應(yīng)配圖分步解析制造流程,且都部分涉及柱狀結(jié)構(gòu)形成、銅PVD、化學(xué)機(jī)械拋光(CMP)、線(xiàn)與間隔的形成、氧化物填充、IBE刻蝕、原子層沉積 (ALD)、銅PVD及其他圖示的獨(dú)立工藝步驟。

為形成分隔開(kāi)的金屬線(xiàn),需要制造間隔和臺(tái)面充當(dāng)絕緣阻擋層。磨平沉積物后,可以進(jìn)行線(xiàn)和間隔的圖形化,以及X或Y方向上的任意長(zhǎng)度刻蝕,從而制造對(duì)應(yīng)方向的線(xiàn)。在制造通孔時(shí),可進(jìn)行交叉刻蝕,避免X和Y方向的線(xiàn)掩膜交叉受到刻蝕。不需要通孔的區(qū)域則可在金屬沉積前覆蓋絕緣間隔結(jié)構(gòu)。

03 電阻結(jié)果與結(jié)論

隨后,我們測(cè)量了大馬士革流程和PVD兩種工藝下,最頂層金屬到FinFET結(jié)構(gòu)P和N溝道通孔的線(xiàn)電阻。圖4展示P和N通道電阻測(cè)量的起點(diǎn)和終點(diǎn)(其他所有絕緣材料透明)。為彌補(bǔ)氮化鉭內(nèi)襯層和銅線(xiàn)間的接觸電阻,計(jì)算銅電阻時(shí)我們考慮了電子的表面散射效應(yīng),離氮化鉭界面越近,銅電阻率越高,電阻率的衰減長(zhǎng)度設(shè)置為1nm。因?yàn)榇篑R士革填充銅沉積預(yù)計(jì)不是全晶,所以銅的電阻率提升50%。PVD/IBE銅工藝不使用氮化鉭內(nèi)襯層,因此未應(yīng)用指數(shù)衰減函數(shù),并在此模型中使用了銅的體電阻率。圖4包含大馬士革流程與PVD的電阻率比較表格。

1723777451806442.png

圖4 展示了采用大馬士革流程和PVD工藝的FinFET器件3D模型圖,這些模型畫(huà)出P和N溝道的電阻測(cè)量點(diǎn)。3D模型下方的表格比較了P和N溝道的大馬士革和PVD電阻值。表格顯示,相比大馬士革沉積,使用IBE/PVD可降低67%的電阻

從模型計(jì)算得出的電阻值表明,與傳統(tǒng)的溝槽刻蝕+大馬士革沉積方法相比,采用IBE/PVD制造方法可使電阻降低67%。這是因?yàn)镮BE/PVD不需要氮化鉭內(nèi)襯層,且該過(guò)程中銅線(xiàn)電阻率較低。該結(jié)果表明,在金屬線(xiàn)制造過(guò)程中,與大馬士革填充相比,IBE/PVD可以降低電阻率,但代價(jià)是制造工藝更為復(fù)雜。



評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉