新穎高效率開關(guān)電源控制器設計方案
1 引言
降壓型集成開關(guān)電源控制器廣泛應用于各類便攜式設備中。 近年來,隨著電池供電的便攜式設備,如手機、MP3 播放器、PDA 等性能的提高和功能的日趨豐富,對于開關(guān)電源的效率提出了越來越高的要求。
為提高效率和減少片外元器件, 目前應用的Buck變換器通常集成了功率開關(guān)和同步整流開關(guān)。 同時, 為減小片外電感元件的尺寸以適應便攜式設備的應用,開關(guān)頻率往往設置為幾兆甚至更高的數(shù)量級。 由此帶來的問題是,當變換器工作在輕載條件下, 開關(guān)損耗就變成了主要的功率損耗。 而便攜式設備恰恰常工作于待機狀態(tài)即輕載工作狀態(tài)下,輕載效率對于延長電池的使用壽命至關(guān)重要。 因此,提高輕載效率的問題受到了高度關(guān)注。
解決上述問題的一種常見方法是在輕載情況下降低開關(guān)頻率,從而使得變換器的效率保持在與重載近似的水平上。 這種技術(shù)有PFM/ PWM 多模式調(diào)制、共柵驅(qū)動等,但是它們有一個共同的缺點:開關(guān)頻率隨負載調(diào)制,這使片外濾波器的設計變得相當復雜。
本文提出的綠色模式降壓型功率集成開關(guān)電源控制器芯片采用了Burst/ PWM 多模式調(diào)制技術(shù),控制變換器在重載下以恒定頻率工作在PWM 模式,而當負載降低到一定程度時,自動切換到Burst 模式并以降低的恒定頻率工作。 其主要優(yōu)點是減少了開關(guān)損耗, 又不增加片外濾波器的設計復雜度。 此外,Burst 模式還可以根據(jù)應用的需要,由用戶控制使能或禁止。 并且在模式轉(zhuǎn)換過程中,采用雙基準法實現(xiàn)模式轉(zhuǎn)換的平滑過渡和負載遲滯。 同時,芯片引入片上電流檢測技術(shù)以取代傳統(tǒng)的電阻電流檢測, 在一定程度上減少了功耗。 功率開關(guān)和同步整流開關(guān)的集成也簡化了片外應用電路的設計。
2 系統(tǒng)設計
本文提出的綠色模式降壓型開關(guān)電源控制器是一個恒定頻率工作、峰值電流控制模式的Buck 變換器,輸出電壓經(jīng)由片外分壓電阻反饋調(diào)節(jié),功率開關(guān)和同步整流開關(guān)均由片上集成。 系統(tǒng)原理如圖1 所示。
圖1 系統(tǒng)原理圖
2. 1 峰值電流PWM控制模式
DC2DC 變換器的控制策略主要有電壓型控制和電流型控制兩種。 與電壓型控制相比,電流型控制策略因具有較好的線性調(diào)整率和較為簡單的補償電路等優(yōu)點而被廣泛采用。
作者提出的綠色模式Buck 變換器在重載條件下工作時,采用峰值電流PWM 控制策略。 通常,根據(jù)電感電流檢測方法的不同,電流型控制又可分為平均電流控制、峰值電流控制、模擬電流控制等不同模式,其中峰值電流控制模式因?qū)斎腚妷汉洼敵鲐撦d變化的瞬態(tài)響應快、具有瞬時峰值電流限流功能等優(yōu)點,應用最為廣泛。
峰值電流控制環(huán)路主要由電流環(huán)和電壓環(huán)構(gòu)成。 控制環(huán)路的工作過程由圖2 所示。 圖中:
V sense = Vin - KIsense (1)
式中 V in是輸入電源電壓;V sense 是電流檢測模塊檢測到的電壓信號; Isense是檢測模塊檢測到的與電感電流成比例的信號。 另外,圖2 中的V peak 信號即為受電壓環(huán)控制的預期要達到的與電感電流峰值相對應的電壓信號。
圖2 峰值電流控制過程
在每個周期開始時,由時鐘上升沿置位主RS 觸發(fā)器,功率開關(guān)打開,變換器進入充電階段,電感電流上升, Isense 上升而V sense 下降。 當電感電流達到峰值, 即V sense達到V peak時,電流比較器( Icomp ) 的輸出復位RS 觸發(fā)器控制功率開關(guān)關(guān)斷。 這就是電流環(huán)的工作過程。 而電感電流的峰值主要由電壓環(huán)控制。 具體地說,當反饋電壓下降到基準以下時,誤差放大器( EA) 輸出上升,限制電流上升峰值的V peak 電壓隨之下降,于是功率開關(guān)的開啟占空比增大,輸出電壓上升,反之亦然。 其中反饋電壓是由輸出電壓經(jīng)過電阻分壓得到的。
在功率開關(guān)關(guān)斷的時間間隔內(nèi), 傳統(tǒng)的降壓型Buck 變換器采用肖特基二極管作為續(xù)流二極管。 因此,當肖特基二極管導通時,它的導通壓降(典型值013V)引起的功率損耗將是不可避免的。 為了減少導通損耗,引入了同步整流技術(shù)。 同步整流即采用一個同步功率開關(guān)代替整流二極管。 當同步整流開關(guān)導通時,導通電阻一般在100mΩ 以下,以1A 負載為例,此時的導通損耗近似為011W;而對于導通電壓為013V 的肖特基二極管,損耗近似為013W. 可見在中小功率的應用當中,同步整流可以有效地提高開關(guān)電源變換器的效率。
由于同步整流開關(guān)和肖特基二極管之間工作方式的差異,需同時引入一些控制電路和保護電路。
首先,在功率開關(guān)和同步整流開關(guān)兩個開關(guān)轉(zhuǎn)換的瞬間,必須設置一個死區(qū)時間(anti2shoot2thru) 來防止兩個開關(guān)同時導通導致輸入電源短路。 在死區(qū)時間內(nèi),功率開關(guān)和同步整流開關(guān)都關(guān)斷,此時電流由同步整流開關(guān)上寄生的二極管續(xù)流,所以在合理范圍內(nèi)死區(qū)時間越短就越能減少功耗,一般設計在 10ns 左右(1MHz 工作頻率下) 。
其次,同步整流開關(guān)不像肖特基二極管那樣只能單向?qū)щ?,當變換器工作在斷續(xù)電流模式下,在下一個周期開始之前,同步整流開關(guān)上的電流就已經(jīng)下降到零并反向,此時,電感電流反向相當于從負載抽電流,導致能量的浪費以及變換器效率的降低。 因此必須設計一個防止同步整流開關(guān)電流反向的檢測電路( rever se) 來檢測電流方向。 本設計是利用檢測SW 點的電壓,當電壓從負變正時,反向電流比較器控制同步整流開關(guān)關(guān)斷。
2. 2 Burst 控制模式
在輕載情況下,這個多模式開關(guān)電源控制器還可以控制變換器工作在Burst 模式。 在這種模式下,功率開關(guān)根據(jù)負載情況連續(xù)工作幾個周期再關(guān)斷幾個周期,因此可以有效地減少開關(guān)損耗和降低靜態(tài)功耗。 對于便攜式設備應用來說,輕載情況下的變換器效率是一項非常重要的指標,因此Bur st 控制模式必不可少。 Burst 模式的工作過程如圖3 所示。
圖3 Burst 模式工作過程
當變換器工作在Burst 模式時,電感電流峰值的最小值被控制在150mA 左右,不再隨著負載的降低而降低,即Vpeak 信號不再受誤差放大器輸出控制。 Bur st 模式工作狀態(tài)和休眠狀態(tài)(sleep mode) 的切換主要由一個Bur st 比較器控制。 該比較器是一個典型的遲滯比較器,它的遲滯窗口直接決定了在Bur st 工作模式下輸出電壓的紋波大小。 輸出電壓的波動反饋到Bur st 比較器,當反饋電壓超過比較器上限時,Bur st 比較器輸出會強制功率開關(guān)關(guān)斷幾個周期,進入休眠狀態(tài);反之,當反饋電壓低于比較器下限時,Burst 比較器的輸出允許功率開關(guān)按正常方式工作。 因此,在工作情況下,功率開關(guān)的開關(guān)頻率依然是恒定的,而且,在負載恒定的情況下,休眠狀態(tài)和工作狀態(tài)的交替過程也是按恒定頻率進行的。 每個Burst 工作過程視負載變化而定:在非常輕的負載下只持續(xù)幾個周期,而在重載情況下可能持續(xù)多個周期或者保持連續(xù)工作。 在Bur st 工作周期之間的休眠階段,功率開關(guān)和其他一些不必要的電路都被關(guān)斷,從而進一步減小靜態(tài)功耗,此時的負載電流完全由輸出電容供給。
2. 3 模式轉(zhuǎn)換
在多模式控制的變換器中,由于在輕重載條件下采用不同的控制策略,會在負載變化和模式切換的時候產(chǎn)生一些問題:一是當負載電流正好在所設定的模式切換點附近波動時,會使變換器在兩種工作模式間反復切換,極容易造成工作狀態(tài)不穩(wěn)定;二是在模式切換的瞬間會產(chǎn)生較大的過沖電壓,導致器件損壞。 這是多模式變換器普遍存在的一個嚴重缺陷。 針對這一缺陷,本文提出一種雙基準解決方案,即對PWM 模式和Bur st 模式采用不同的基準電壓,這樣不但可以實現(xiàn)如前所述的模式切換過程中的遲滯功能,且可抑制一部分過沖電壓。 模式切換時的工作原理如圖4所示。
圖4 模式切換時的工作原理
在Bur st 工作模式中,控制器控制輸出電壓略高于PWM 工作模式中的輸出電壓,設計中,Bur st 下限高于EA 基準的016 % ,上限高于EA 基準
評論