新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 電源工程師設(shè)計札記:輕松完成電源設(shè)計

電源工程師設(shè)計札記:輕松完成電源設(shè)計

作者: 時間:2012-08-11 來源:網(wǎng)絡(luò) 收藏
入反饋節(jié)點,DC/DC轉(zhuǎn)換器的輸出必須下降以進行補償。要提升DC/DC轉(zhuǎn)換器輸出,DACx輸出電壓設(shè)定值須低于反饋節(jié)點電壓。為降低噪聲,如圖中所示,可以將該串聯(lián)電阻分成兩個電阻,其間的節(jié)點可以通過一個電容去耦到DC/DC轉(zhuǎn)換器的地

  閉環(huán)余量微調(diào)

  一種更精確、更全面的余量微調(diào)方法是在閉環(huán)系統(tǒng)中使用類似的電路。圖4所示為針對1.2 V輸出的一個例子。要微調(diào)的軌電壓可以通過VX2回讀,確保將其精確調(diào)整到目標(biāo)電壓。ADM1066集成了執(zhí)行微調(diào)所需的全部電路,12位逐次逼近型ADC用于讀取受監(jiān)控電壓的電平,6個電壓輸出DAC用于按照上述方法調(diào)整電平。這些電路可以配合微控制器等其它智能器件使用,以實現(xiàn)閉環(huán)余量微調(diào)系統(tǒng),它可以將DC/DC轉(zhuǎn)換器或LDO電源設(shè)定到任何電壓,精度為目標(biāo)值的±0.5%。

  為了在要測試的電源軌上實現(xiàn)閉環(huán)余量微調(diào),請執(zhí)行下列步驟:

  禁用6路DACx輸出。

  DACx輸出電壓設(shè)定為反饋節(jié)點電壓

  使能DAC

  讀取連接到VPx、VH或VXx引腳之一的DC/DC轉(zhuǎn)換器輸出的電壓。

  需要時,提高或降低DACx輸出電壓以調(diào)整DC/DC轉(zhuǎn)換器輸出電壓。否則就停止,目標(biāo)電壓已經(jīng)達到。

  將DAC輸出電壓設(shè)定為某一值,使電源輸出改變所需的幅度(例如±5%)。

  重復(fù)該過程,直至達到該電源軌所需的電壓

  步驟1至3確保各DACx輸出緩沖器開啟時,它對DC/DC轉(zhuǎn)換器輸出的直接影響非常小。DAC輸出緩沖器的作用是消除上電時的瞬變“毛刺”,因為緩沖器首先上電并跟隨引腳電壓,此時它不驅(qū)動該引腳。一旦輸出緩沖器正確使能,緩沖器輸入即切換到DAC,緩沖器的輸出級開啟,從而消除輸出毛刺。

  開關(guān)調(diào)節(jié)器的同步

  在具有多個電源軌并使用一個以上開關(guān)調(diào)節(jié)器或控制器的系統(tǒng)中,由于內(nèi)部開關(guān)頻率的差異,這些器件之間可能會相互作用。這會引起拍頻諧波,大幅提高電源噪聲,嚴重影響EMI測試。幸運的是,許多開關(guān)控制器和調(diào)節(jié)器在設(shè)計上都支持內(nèi)部時鐘同步。LDO不存在這個問題,但其電流輸出有限,并且在大多數(shù)情況效率較差,因此有時可能不合需要。

  雙通道開關(guān)調(diào)節(jié)器ADP2116 就是可同步器件的一個很好的例子。通過SCFG引腳,可將其SYNC/CLKOUT引腳配置為輸入SYNC引腳或輸出CLKOUT引腳。作為輸入SYNC引腳,它可讓ADP2116與外部時鐘同步,兩個通道以外部時鐘頻率的一半、彼此180°錯相工作。

  作為輸出CLKOUT引腳,它可提供輸出時鐘,其頻率是通道開關(guān)頻率的兩倍且90°錯相。因此,一個配置為CLKOUT的ADP2116可以充當(dāng)主轉(zhuǎn)換器,為所有其它DC/DC轉(zhuǎn)換器(包括其它ADP2116器件)提供外部時鐘(圖6)。配置為從器件時,它接收主器件的外部時鐘并與之同步。通過同步系統(tǒng)內(nèi)的所有DC/DC轉(zhuǎn)換器,這種方法可防止產(chǎn)生能導(dǎo)致EMI問題的拍頻諧波。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  圖6. 利用外部時鐘同步多個ADP2116

  結(jié)束語

  本文討論多電源系統(tǒng)的處理方法。時序控制器、監(jiān)控器、調(diào)節(jié)器和控制器具有非常高的功能集成度,便于設(shè)計工程師處理潛在的電源問題,而無需采用全部是分立IC的電路板。這些器件對設(shè)計工程師非常有用,可以提高設(shè)計成功的概率,降低重新設(shè)計的可能性和電路板開發(fā)延誤的風(fēng)險。

  4、在系統(tǒng)中成功運用DC-DC降壓調(diào)節(jié)器

  智能手機、平板電腦、數(shù)碼相機、導(dǎo)航系統(tǒng)、醫(yī)療設(shè)備和其它低功耗便攜式設(shè)備常常包含多個采用不同半導(dǎo)體工藝制造的集成電路。這些設(shè)備通常需要多個獨立的電源電壓,各電源電壓一般不同于電池或外部 AC/DC電源提供的電壓。

  圖 1 顯示了一個采用鋰離子電池供電的典型低功耗系統(tǒng)。電池的可用輸出范圍是 3 V到 4.2V,而IC需要 0.8 V、1.8 V、 2.5 V和 2.8 V電壓。為將電池電壓降至較低的直流電壓,一種簡單的方法是運用低壓差調(diào)節(jié)器(LDO)。不過,當(dāng)VIN遠高于 VOUT時,未輸送到負載的功率會以熱量形式損失,導(dǎo)致LDO 效率低下。一種常見的替代方案是采用開關(guān)轉(zhuǎn)換器,它將能量交替存儲在電感的磁場中,然后以不同的電壓釋放給負載。這種方案的損耗較低,是一種更好的選擇,可實現(xiàn)高效率運行。本文介紹降壓型轉(zhuǎn)換器,它提供較低的輸出電壓。升壓型轉(zhuǎn)換器將另文介紹,它提供較高的輸出電壓。內(nèi)置 FET作為開關(guān)的開關(guān)轉(zhuǎn)換器稱為開關(guān)調(diào)節(jié)器,需要外部FET的開關(guān)轉(zhuǎn)換器則稱為開關(guān)控制器。多數(shù)低功耗系統(tǒng)同時運用 LDO和開關(guān)轉(zhuǎn)換器來實現(xiàn)成本和性能目標(biāo)。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  圖 1. 典型低功耗便攜式系統(tǒng)

  降壓調(diào)節(jié)器包括 2 個開關(guān)、2 個電容和 1 個電感,如圖 2 所示。非交疊開關(guān)驅(qū)動機制確保任一時間只有一個開關(guān)導(dǎo)通,避免發(fā)生不良的電流“直通”現(xiàn)象。在第 1 階段,開關(guān)B斷開,開關(guān)A閉合。電感連接到VIN,因此電流從VIN流到負載。由于電感兩端為正電壓,因此電流增大。在第 2 階段,開關(guān)A斷開,開關(guān)B閉合。電感連接到地,因此電流從地流到負載。由于電感兩端為負電壓,因此電流減小,電感中存儲的能量釋放到負載中。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  圖 2. 降壓轉(zhuǎn)換器拓撲結(jié)構(gòu)和工作波形

  注意,開關(guān)調(diào)節(jié)器既可以連續(xù)工作,也可以斷續(xù)工作。連續(xù)導(dǎo)通以連續(xù)導(dǎo)通模式(CCM)工作時,電感電流不會降至 0;以斷續(xù)導(dǎo)通模式(DCM)工作時,電感電流可以降至 0。低功耗降壓轉(zhuǎn)換器很少在斷續(xù)導(dǎo)通模式下工作。設(shè)計的,電流紋波(如圖 2中的ΔI 所示)通常為標(biāo)稱負載電流的 20%到 50%。

  在圖 3 中,開關(guān) A 和開關(guān) B 分別利用 PFET 和 NFET 開關(guān)實現(xiàn),構(gòu)成一個同步降壓調(diào)節(jié)器?!巴健币辉~表示將一個 FET 用作低端開關(guān)。用肖特基二極管代替低端開關(guān)的降壓調(diào)節(jié)器稱為“異步”(或非同步)型。處理低功率時,同步降壓調(diào)節(jié)器更有效,因為 FET 的壓降低于肖特基二極管。然而,當(dāng)電感電流達到 0 時,如果底部 FET 未釋放,同步轉(zhuǎn)換器的輕載效率會降低,而且額外的控制電路會提高 IC 的復(fù)雜性和成本。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  圖 3. 降壓調(diào)節(jié)器集成振蕩器、PWM控制環(huán)路和開關(guān) FET

  目前的低功耗同步降壓調(diào)節(jié)器以脈寬調(diào)制(PWM)為主要工作模式。PWM保持頻率不變,通過改變脈沖寬度(tON)來調(diào)整輸出電壓。輸送的平均功率與占空比D成正比,因此這是一種向負載提高功率的有效方式。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  FET 開關(guān)由脈寬控制器控制,后者響應(yīng)負載變化,利用控制環(huán)路中的電壓或電流反饋來調(diào)節(jié)輸出電壓。低功耗降壓轉(zhuǎn)換器的工作頻率范圍一般是 1 MHz 到 6 MHz。開關(guān)頻率較高時,所用的電感可以更小,但開關(guān)頻率每增加一倍,效率就會降低大約 2%。

  在輕載下,PWM 工作模式并不總是能夠提高系統(tǒng)效率。以圖形卡電源電路為例,視頻內(nèi)容改變時,驅(qū)動圖形處理器的降壓轉(zhuǎn)換器的負載電流也會改變。連續(xù) PWM 工作模式可以處理寬范圍的負載電流,但在輕載下,調(diào)節(jié)器所需的功率會占去輸送給負載的總功率的較大比例,導(dǎo)致系統(tǒng)效率迅速降低。針對便攜應(yīng)用,降壓調(diào)節(jié)器集成了其它省電技術(shù),如脈沖頻率調(diào)制(PFM)、脈沖跳躍或這兩者的結(jié)合等。

  ADI公司將高效率輕載工作模式定義為“省電模式”(PSM)。進入省電模式時,PWM調(diào)節(jié)電平會產(chǎn)生偏移,導(dǎo)致輸出電壓上升,直至它達到比PWM調(diào)節(jié)電平高約 1.5%的電平,此時 PWM工作模式關(guān)閉,兩個功率開關(guān)均斷開,器件進入空閑模式。COUT可以放電,直到VOUT降至PWM調(diào)節(jié)電壓。然后,器件驅(qū)動電感,導(dǎo)致VOUT再次上升到閾值上限。只要負載電流低于省電模式電流閾值,此過程就會重復(fù)進行。

  ADP2138 是一款緊湊型 800 mA、3 MHz、降壓 DC-DC 轉(zhuǎn)換器。圖 4所示為典型應(yīng)用電路。圖 5顯示了強制 PWM工作模式下和自動 PWM/PSM 工作模式下的效率改善情況。由于頻率存在變化,PSM 干擾可能難以濾除,因此許多降壓調(diào)節(jié)器提供一個 MODE 引腳(如圖 4 所示),用戶可以通過該引腳強制器件以連續(xù) PWM 模式工作,或者允許器件以自動 PWM/PSM 模式工作。MODE 引腳既可以通過硬連線來設(shè)置任一工作模式,也可以根據(jù)需要而動態(tài)切換,以達到省電目的。

  電源工程師設(shè)計札記:輕松完成電源設(shè)計

  圖



關(guān)鍵詞: 電源 電源設(shè)計

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉