新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 基于單目視覺的智能車輛視覺導(dǎo)航系統(tǒng)設(shè)計(jì)

基于單目視覺的智能車輛視覺導(dǎo)航系統(tǒng)設(shè)計(jì)

作者: 時(shí)間:2012-02-22 來源:網(wǎng)絡(luò) 收藏


2.2 車輛檢測(cè)

圖像中包含車輛前方很大視野內(nèi)的物體,如道路、樹木、護(hù)欄、標(biāo)牌以及其他車輛,要從中準(zhǔn)確檢測(cè)出前方車輛是一項(xiàng)困難的工作,而本文的車輛檢測(cè)模塊會(huì)根據(jù)圖像背景自動(dòng)改變?cè)O(shè)置參數(shù),以適應(yīng)不斷變化的道路場(chǎng)景和光照條件。

要實(shí)現(xiàn)車輛的快速檢測(cè),首先需要根據(jù)車輛的基本特征進(jìn)行初步檢測(cè),將所有可能的疑似車輛區(qū)域從圖像中提取出來,然后再根據(jù)其他特征對(duì)疑似區(qū)域進(jìn)行篩選排除。

2.2.1 車輛初步檢測(cè)

初步檢測(cè)采用的特征是車輛陰影,即一塊位于目標(biāo)車輛底部、灰度值明顯比附近路面區(qū)域低的區(qū)域。在一般環(huán)境條件下,大部分車輛都具有這一顯著特征。

車輛初步檢測(cè)的流程如圖1所示。車輛陰影和車道一樣具有灰度突變的特點(diǎn),因此可以調(diào)用車道檢測(cè)算法對(duì)圖2(a)中的原始圖像做二值化處理,得到圖2(b)中的邊緣二值化圖像。同時(shí)還要對(duì)原始圖像進(jìn)行灰度二值化,得到圖2(c)中的灰度二值化圖像。為提高檢測(cè)實(shí)時(shí)性,以本車附近路面區(qū)域的平均灰度作為二值化閾值。由于邊緣二值化圖像和灰度二值化圖像都包括了車輛的下底邊,將這兩幅圖像進(jìn)行“或”運(yùn)算,就可以得到如圖2(d)所示的車輛陰影圖像。

在陰影圖像中由下至上逐行搜索,尋找連續(xù)陰影點(diǎn)超過一定閾值的線段,并以此線段為底邊劃出一個(gè)矩形區(qū)域作為疑似車輛區(qū)域。為保證疑似區(qū)域包含車輛整體,矩形的寬度比線段稍寬,高度由寬度按比例給出。為避免重復(fù)搜索,將已搜索到的疑似區(qū)域內(nèi)陰影完全抹去。由于同一車輛的各個(gè)部分可能分別被檢測(cè)為疑似目標(biāo),因此還需要對(duì)各個(gè)相交的疑似區(qū)域進(jìn)行合并。由于前方車輛的遮擋,可能會(huì)將多個(gè)目標(biāo)認(rèn)定為一個(gè)目標(biāo),但是對(duì)本車的安全無影響。

2.2.2 篩選驗(yàn)證

如果單純采用陰影特征進(jìn)行車輛檢測(cè),在保證較低“漏警”率的同時(shí),也造成了較高的“虛警”率,因此還需要對(duì)疑似區(qū)域進(jìn)行篩選和驗(yàn)證。

對(duì)于結(jié)構(gòu)化道路,車輛寬度與車道寬度的比值應(yīng)該是大致固定的,那么當(dāng)攝像機(jī)的焦距、俯仰角等參數(shù)固定后,圖像上車道寬度(像素?cái)?shù))與車輛寬度(像素?cái)?shù))也滿足這個(gè)比例。根據(jù)之前檢測(cè)的車道方程,就可以計(jì)算出感興趣區(qū)域內(nèi)任意縱坐標(biāo)上車輛圖像寬度的范圍,并剔除寬度不在此范圍內(nèi)的疑似區(qū)域。


評(píng)論


技術(shù)專區(qū)

關(guān)閉