新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > DSP+FPGA實時信號處理系統(tǒng)的設計

DSP+FPGA實時信號處理系統(tǒng)的設計

作者: 時間:2010-11-25 來源:網(wǎng)絡 收藏

系統(tǒng)要求必須具有處理大數(shù)據(jù)量的能力,以保證系統(tǒng)的實時性;其次對系統(tǒng)的體積、功耗、穩(wěn)定性等也有較嚴格的要求。算法中經(jīng)常用到對圖象的求和、求差運算,二維梯度運算,圖象分割及區(qū)域特征提取等不同層次、不同種類的處理。其中有的運算本身結構比較簡單,但是數(shù)據(jù)量大,計算速度要求高;有些處理對速度并沒有特殊的要求,但計算方式和控制結構比較復雜,難以用純硬件實現(xiàn)。因此,系統(tǒng)是對運算速度要求高、運算種類多的綜合性信息處理系統(tǒng)。

1 信號處理系統(tǒng)的類型與常用

根據(jù)信號處理系統(tǒng)在構成、處理能力以及計算問題到硬件結構映射方法的不同,將現(xiàn)代信號處理系統(tǒng)分為三大類:

·指令集結構(ISA)系統(tǒng)。在由各種微處理器、DSP處理器或專用指令集處理器等組成的信號處理系統(tǒng)中,都需要通過系統(tǒng)中的處理器所提供的指令系統(tǒng)(或微代碼)來描述各種算法,并在指令部件的控制下完成對各種可計算問題的求解。

·硬連線結構系統(tǒng)。主要是指由專用集成電路(ASIC)構成的系統(tǒng),其基本特征是功能固定、通常用于完成特定的算法,這種系統(tǒng)適合于實現(xiàn)功能固定和數(shù)據(jù)結構明確的計算問題。不足之處主要在于:設計周期長、成本高,且沒有可編程性,可擴展性差。

·可重構系統(tǒng)。基本特征是系統(tǒng)中有一個或多個可重構器件(如FPGA),可重構處理器之間或可重構處理器與ISA結構處理器之間通過互連結構構成一個完整的計算系統(tǒng)。

從系統(tǒng)信號處理系統(tǒng)的構成方式來看,常用的有下面幾種:單指令流單數(shù)據(jù)流(SISD)、單指令流多數(shù)據(jù)流(SIMD)、多指令流多數(shù)據(jù)流(MIMD)。

·SISD結構通常由一個處理器和一個存貯器組成,它通過執(zhí)行單一的指令流對單一的數(shù)據(jù)流進行操作,指令按順序讀取,數(shù)據(jù)在每一時刻也只能讀取一個。弱點是單片處理器處理能力有限,同時,這種結構也沒有發(fā)揮數(shù)據(jù)處理中的并行性潛力,所以在實時系統(tǒng)或高速系統(tǒng)中,很少采用SISD結構。

· SIMD結構系統(tǒng)由一個控制器、多個處理器、多個存貯模塊和一個互連網(wǎng)絡組成。所有“活動的”處理器在同一時刻執(zhí)行同一條指令,但每個處理器執(zhí)行這條指令時所用的數(shù)據(jù)是從它本身的存儲模塊中讀取的。對操作種類多的算法,當要求存取全局數(shù)據(jù)或對于不同的數(shù)據(jù)要求做不同的處理時,它是無法獨立勝任的。另外,SIMD 一般都要求有較多的處理單元和極高的I/O吞吐率,如果系統(tǒng)中沒有足夠多的適合SIMD 處理的任務,采用SIMD 是不合算的。

· MIMD結構就是通常所指的多處理機,典型的MIMD系統(tǒng)由多臺處理機、多個存儲模塊和一個互連網(wǎng)絡組成,每臺處理機執(zhí)行自己的指令,操作數(shù)也是各取各的。MIMD結構中每個處理器都可以單獨編程,因而這種結構的可編程能力是最強的。但由于要用大量的硬件資源解決可編程問題,硬件利用率不高。

2 DSP+ASIC結構

隨著大規(guī)??删幊唐骷陌l(fā)展,采用DSP+ASIC結構的信號處理系統(tǒng)顯示出了其優(yōu)越性,正逐步得到重視。與通用集成電路相比,ASIC芯片具有體積小、重量輕、功耗低、可靠性高等幾個方面的優(yōu)勢,而且在大批量應用時,可降低成本。

現(xiàn)場可編程門陣列(FPGA)是在專用ASIC的基礎上發(fā)展出來的,它克服了專用ASIC不夠靈活的缺點。與其他中小規(guī)模集成電路相比,其優(yōu)點主要在于它有很強的靈活性,即其內(nèi)部的具體邏輯功能可以根據(jù)需要配置,對電路的修改和維護很方便。目前,FPGA的容量已經(jīng)跨過了百萬門級,使得FPGA成為解決系統(tǒng)級設計的重要選擇方案之一。

DSP+FPGA結構最大的特點是結構靈活,有較強的通用性,適于模塊化設計,從而能夠提高算法效率;同時其開發(fā)周期較短,系統(tǒng)易于維護和擴展,適合于實時信號處理。

實時信號處理系統(tǒng)中,低層的信號預處理算法處理的數(shù)據(jù)量大,對處理速度的要求高,但運算結構相對比較簡單,適于用FPGA進行硬件實現(xiàn),這樣能同時兼顧速度及靈活性。高層處理算法的特點是所處理的數(shù)據(jù)量較低層算法少,但算法的控制結構復雜,適于用運算速度高、尋址方式靈活、通信機制強大的DSP芯片來實現(xiàn)。

結構

在我們的工作中,設計并實現(xiàn)了一種實時信號處理結構。它采用模塊化設計和結構。

這種結構具有如下特點:

·接口簡單。各處理單元(PU)之間采用統(tǒng)一的外部接口。

·易于擴充和維護。各個PU的內(nèi)部結構完全相同,而且外部接口統(tǒng)一,所以系統(tǒng)很容易根據(jù)需要進行硬件的配置和擴充。當某個模塊出現(xiàn)故障時,也易于更換。

·處理模塊的規(guī)范結構能夠支持多種處理模式,可以適應不同的處理算法。

每個PU的核心由DSP芯片和可重構器件FPGA組成,另外還包括一些外圍的輔助電路,如存儲器、先進先出(FIFO)器件及FLASH ROM等(圖2)??芍貥嬈骷娐放cDSP處理器相連,利用DSP處理器強大的I/O功能實現(xiàn)單元電路內(nèi)部和各個單元之間的通信。從DSP的角度來看,可重構器件FPGA相當于它的宏功能協(xié)處理器(Co-processor)。

PU中的其他電路輔助核心電路進行工作。DSP和FPGA各自帶有RAM,用于存放處理過程所需要的數(shù)據(jù)及中間結果。FLASH ROM中存儲了DSP的執(zhí)行程序和FPGA的配置數(shù)據(jù)。先進先出(FIFO)器件則用于實現(xiàn)信號處理中常用到的一些操作,如延時線、順序存儲等。

PU單獨做成一塊PCB,各級PU之間通過插座與底板相連。底板的結構很簡單,主要由幾個串連的插座構成,其作用是向各個PU提供通信通道和電源供應??梢愿鶕?jù)需要安排底板上插座的個數(shù),組成多級線性陣列結構。這種模塊化設計的突出優(yōu)點在于,它使得對系統(tǒng)的功能擴充和維護變得非常簡單。需要時,只要插上或更換PU電路板,就可以實現(xiàn)系統(tǒng)的擴展和故障的排除。每一級PU中的DSP都有通信端口與前級和后級PU電路板相連,可以很方便地控制和協(xié)調它們之間的工作。

4 應用實例

我們應用上述線性流水陣列結構實現(xiàn)了一個實時目標檢測系統(tǒng),該系統(tǒng)的任務主要是接收攝像頭輸出的灰度圖象,經(jīng)預處理、編碼、直線擬合和目標識別后,輸出結果到PC機顯示。在這個任務中,預處理模塊包括抽樣、卷積和編碼等步驟,屬于低層的處理,其運算數(shù)據(jù)量大,但運算結構較規(guī)則,適于用FPGA進行純硬件實現(xiàn);而直線擬合及目標識別等高層圖象處理算法,所處理的數(shù)據(jù)量相對較少,但要用到多種數(shù)據(jù)結構,其控制也復雜得多,我們用DSP編程來實現(xiàn)。

重構處理模塊采用的是Xilinx公司的XC5200系列FPGA芯片。這是一種基于SRAM的現(xiàn)場可編程門陣列。表1給出了XC5200 系列FPGA的一些參數(shù)。

表1 XC5200系列FPGA的一些參數(shù)

器件XC5204XC5206XC5210XC5215
邏輯單元48078412961936
最大邏輯門6000100001600023000
多功能塊10×1214×1418×1822×22
CLB120196324484
觸發(fā)器48078412961936
I/O124148196244

XC5200系列FPGA邏輯功能的實現(xiàn)由內(nèi)部規(guī)則排列的邏輯單元陣列(LCA)來完成,它是FPGA的主要部分。LCA的核心是可重構邏輯塊(CLB),四周是一些輸入/輸出塊(IOB)。CLB和IOB之間通過片內(nèi)的布線資源相連接。LCA由配置代碼驅動,CLB和IOB的具體邏輯功能及它們的互聯(lián)關系由配置數(shù)據(jù)決定。整個FPGA模塊的設計實現(xiàn)在Xilinx公司的Foundation 2.1i開發(fā)平臺上完成。該系統(tǒng)支持設計輸入、邏輯仿真、設計實現(xiàn)(設計綜合)和時序仿真等系統(tǒng)開發(fā)全過程。

在選用DSP芯片時,主要應考慮性能能否滿足快速判讀算法的要求,具體說就是要求選擇那些指令周期短、數(shù)據(jù)吞吐率高、通信能力強、指令集功能完備的處理器,同時也要兼顧功耗和開發(fā)支持環(huán)境等因素。表2列出了一些常用微處理器的性能參數(shù)。

我們選擇的是應用廣泛、性價比較高的TMS320C40芯片。它是美國TI公司推出的為滿足并行處理需求的32位浮點DSP。主要特性如下:

表2 常用微處理器對照表

處理器類型DSP(Motorola)ADSPTMS320
9600256156210202101C30C40C50
字長/bit32163216323216
指令周期/ns50505060332550
1024浮點FFT時間/ms1.042.330.962.072.361.933.42

·外部時鐘40MHz,內(nèi)部時鐘20MHz,所有指令均單周期完成,處理器內(nèi)部采用高度并行機制,可同時進行多達11項各類操作。

·兩套相同的外部數(shù)據(jù)、地址總線,支持局部存儲器和全局共享存儲器。

·6個高速并行通信口,采用異步傳輸方式,最大速率可達20Mb/s。通過令牌傳遞可靈活實現(xiàn)數(shù)據(jù)雙向傳輸,這種結構很適合C40之間的互連。

·6個DMA通道,每個通道的最大速率可達20Mb/s。DMA內(nèi)部總線與CPU的地址、數(shù)據(jù)、指令總線完全分開,避開了總線使用上的瓶頸。

從結構和功能上看,C40很適合與可重構器件互相配合起來構成高速、高精度的實時信息處理系統(tǒng),并完全可以勝任圖像信息的實時處理任務;此外,C40的開發(fā)系統(tǒng)也比較完備,支持C語言和匯編語言編程,能夠方便地進行算法移植和軟/硬件的協(xié)同設計。

衡量系統(tǒng)的整體性能不僅要看所使用的器件和所能完成的功能,還要看器件之間采用怎樣的互連結構。XC5200可以完成模塊級的任務,起到DSP的協(xié)處理器的作用。它的可編程性使它既具有專用集成電路的速度,又具有很高的靈活性。C40內(nèi)部結構的主要優(yōu)勢是:所有指令的執(zhí)行時間都是單周期,指令采用流水線,內(nèi)部的數(shù)據(jù)、地址、指令及DMA總線分開,有較多的寄存器。這些特征使它有較高的處理速度。FPGA具有硬件的高速性,而C40具有軟件的靈活性,從器件上考察,能夠滿足處理復雜算法的要求。同時,C40的6個通信口和6個DMA通道使其能夠在不被中斷的情況下比較從容地應付與外界大量的數(shù)據(jù)交換。

從PU內(nèi)部互連來看,C40使用了專用的通信口完成與FPGA的互連,能夠保證在任何情況下FPGA與C40的數(shù)據(jù)通道的暢通。另外,FPGA和C40各自都有輸入端口,使得系統(tǒng)的處理結構多樣化。比如,FPGA可以作為處理流程中的一個模塊,獨立完成某項功能,也可以作為C40的協(xié)處理器,通過C40的調用來完成特定的子函數(shù)。底板將互連性延伸到PU之間,使得多個電路板能夠組成多處理機系統(tǒng)。前級的C40既可以與下一級的C40通信,也可以將數(shù)據(jù)發(fā)送到下一級的FPGA。

綜上所述,本文提出的基于DSP+FPGA的線性流水陣列結構,為設計中如何處理軟硬件的關系提供了一個較好的解決方案。同時,該系統(tǒng)具有靈活的處理結構,對不同結構的算法都有較強的適應能力,尤其適合實時信號處理任務。



評論


技術專區(qū)

關閉