新聞中心

EEPW首頁 > 元件/連接器 > 設(shè)計(jì)應(yīng)用 > 三線電阻式溫度檢測器測量系統(tǒng)中勵(lì)磁電流失配的影響

三線電阻式溫度檢測器測量系統(tǒng)中勵(lì)磁電流失配的影響

作者: 時(shí)間:2015-12-16 來源:網(wǎng)絡(luò) 收藏

  本文中我們介紹了三線、引線電阻抵消以及構(gòu)建比例型三線系統(tǒng)所帶來的好處。我們指出,當(dāng)比例型配置從勵(lì)磁電流的初始準(zhǔn)確度中消除誤差后,這兩種勵(lì)磁電流之間的失配仍會引起增益誤差。

本文引用地址:http://butianyuan.cn/article/284434.htm

  TI精密線性產(chǎn)品負(fù)責(zé)組應(yīng)用工程師, COLLIN WELLS

  TI精密Δ-Σ型ADC負(fù)責(zé)組應(yīng)用工程師, RYAN ANDREWS

  許多醫(yī)療、過程控制和工業(yè)自動(dòng)化應(yīng)用都需要精確溫度測量來實(shí)現(xiàn)其功能。電阻式溫度檢測器(RTD)在這些精確溫度測量中通常用作傳感元件,因?yàn)樗鼈兙哂袑挿旱臏囟葴y量范圍、良好的線性度以及卓越的長期穩(wěn)定性和可復(fù)驗(yàn)性。RTD是由金屬制成的傳感元件,在工作溫度范圍內(nèi)具有可預(yù)測的電阻。可通過RTD注入電流并測量電壓來計(jì)算RTD的電阻。然后可基于RTD電阻和溫度之間的關(guān)系來計(jì)算RTD溫度。

  這篇文章討論了比例型三線測量系統(tǒng)的原理和優(yōu)勢。

  Pt100 RTD概述

  Pt100 RTD是一種鉑質(zhì)RTD,可在很寬的溫度范圍內(nèi)提供卓越的性能。鉑是一種貴金屬,作為常用的RTD材料具有最高的電阻率,能實(shí)現(xiàn)小尺寸的。由鉑制成的RTD傳感器有時(shí)被稱為鉑電阻溫度計(jì)或PRT。Pt100 RTD在0℃時(shí)阻抗為100Ω,每1℃的溫度變化大約會引起0.385Ω的電阻變化。當(dāng)處于可用溫度范圍的極限時(shí),電阻為18.51Ω(在-200℃時(shí))或390.48Ω(在850℃時(shí))。Pt1000或Pt5000等價(jià)值更高的電阻式傳感器可用來提高靈敏度和分辨率。

  Callendar Van-Dusen(CVD)方程式詮釋了RTD的電阻特性與溫度(T,以攝氏度為單位)的關(guān)系。當(dāng)溫度為正值時(shí),CVD方程式是二階多項(xiàng)式,如方程式(1)所示。當(dāng)溫度為負(fù)值時(shí),CVD方程式則擴(kuò)展為方程式(2)所示的四階多項(xiàng)式。


  在歐洲的IEC-60751標(biāo)準(zhǔn)中規(guī)定了CVD系數(shù)(A、B和C)。方程式(3)展示了這些系數(shù)值。R0是RTD在0℃時(shí)的電阻。


  圖1標(biāo)繪了溫度從-200℃增至850℃時(shí)Pt100 RTD電阻的變化。


  圖1:溫度從-200℃增至850℃時(shí)的Pt100 RTD電阻

  三線RTD

  三線RTD配置很受歡迎,因?yàn)樗鼈冊诔杀竞蜏?zhǔn)確度之間取得了平衡。在所推薦的三線配置中,一種勵(lì)磁電流(I1)可跨RTD元件產(chǎn)生電壓電勢。與此同時(shí),另一種勵(lì)磁電流(I2)被注入,以便從最終測量值中抵消RTD引線的電阻(RLEAD),如圖2和方程式(4-7)所示。


  圖2:具有導(dǎo)線電阻的三線RTD


  RTD測量電路配置

  差分RTD電壓VDIFF通常由模數(shù)轉(zhuǎn)換器(ADC)進(jìn)行轉(zhuǎn)換,并被傳送到處理器以供解讀。該ADC可將輸入電壓與參考電壓VREF作比較,從而產(chǎn)生數(shù)字輸出。圖3展示了使用離散性外部參考電壓的三線RTD測量電路。方程式(8)則定義了基于數(shù)字代碼總數(shù)、RTD電阻、勵(lì)磁電流大小和參考電壓的最終轉(zhuǎn)換結(jié)果。該示例假設(shè)ADC具有±VREF的滿量程范圍。如圖所示,因參考電壓與勵(lì)磁電流的量值、噪聲和溫度漂移而產(chǎn)生的誤差會直接導(dǎo)致轉(zhuǎn)換錯(cuò)誤。



  圖3:具有外部參考的三線RTD電路

  把RTD和ADC放置在比例型配置(圖4)中,能獲得一種更精確的電路配置,適用于三線RTD系統(tǒng)。在比例型配置里,流過RTD的勵(lì)磁電流可通過低側(cè)參考電阻器RREF返回到接地。跨RREF形成的電壓電勢VREF被提供給ADC的正參考引腳和負(fù)參考引腳(REFP和REFN)。

  跨RTD和RREF電阻器的電壓降是由相同的勵(lì)磁電流產(chǎn)生的(方程式9和方程式10)。因此,勵(lì)磁電流的變化會同時(shí)反映在RTD差分電壓和參考電壓上。由于ADC輸出代碼表示的是輸入電壓和參考電壓之間的關(guān)系,故最終轉(zhuǎn)換結(jié)果可換算為RTD電阻和RREF電阻的比,并非取決于參考電壓或勵(lì)磁電流的值(方程式11)。所以,如果勵(lì)磁電流完美匹配,不影響最終轉(zhuǎn)換結(jié)果,那么因勵(lì)磁電流的大小、溫度漂移和噪聲而產(chǎn)生的誤差就可以消除。此外,比例型配置還有助于減小外部噪聲的影響,因?yàn)檫@種噪聲也會消除。



  圖4:比例型三線RTD電路

  勵(lì)磁電流源失配誤差

  這兩種勵(lì)磁電流必須彼此相等,以實(shí)現(xiàn)理想的傳遞函數(shù)(方程式11)。勵(lì)磁電流失配會改變理想的系統(tǒng)傳遞函數(shù),因?yàn)樗芙档鸵€電阻抵消的有效性。

  當(dāng)一種勵(lì)磁電流被減小或增加的量達(dá)到失配規(guī)范規(guī)定的極限值時(shí),會對傳遞函數(shù)產(chǎn)生最嚴(yán)重的影響。這在方程式(12)(其中Δ代表勵(lì)磁電流失配)里得到了詮釋。

  I2的失配可導(dǎo)致理想傳遞函數(shù)發(fā)生改變(方程式13)。


  通過將方程式(13)的計(jì)算結(jié)果與方程式(11)的理想傳遞函數(shù)進(jìn)行比較,方程式(14)可計(jì)算出勵(lì)磁電流失配引起的增益誤差。

  如果明確規(guī)定勵(lì)磁電流失配用%FSR表示,那么可按方程式(15)所示計(jì)算增益誤差。


  可通過標(biāo)準(zhǔn)增益校準(zhǔn)消除勵(lì)磁電流失配引起的增益誤差。不過,勵(lì)磁電流失配通常會隨溫度變化而漂移,這就需要復(fù)雜的校準(zhǔn)來予以矯正。







關(guān)鍵詞: RTD 傳感器

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉