新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > PCB布線設(shè)計(之五)

PCB布線設(shè)計(之五)

作者:Microchip公司/BonnieC.Baker,EzanaHaile 時間:2005-04-22 來源:eaw 收藏
要解決信號完整性問題,最好有多個工具分析系統(tǒng)性能。如果在信號路徑中有一個A/D轉(zhuǎn)換器,那么當(dāng)評估電路性能時,很容易發(fā)現(xiàn)三個基本問題:所有這三種方法都評估轉(zhuǎn)換過程,以及轉(zhuǎn)換過程與布線及電路其它部分的交互作用。三個關(guān)注的方面涉及到頻域分析、時域分析和直流分析技術(shù)的使用。本文將探討如何使用這些工具來確定與電路布線有關(guān)問題的根源。我們將研究如何決定找什么;到哪里找;如何通過測試檢驗問題;以及如何解決發(fā)現(xiàn)的問題等。


圖1 SCX015壓力傳感器輸出端的電壓由儀表放大器(A1和A2)放大。在儀表放大器之后,添加了一個低通濾波器 (A3),以消除來自12位A/D轉(zhuǎn)換器轉(zhuǎn)換的混疊噪聲


圖2 來自于12位A/D轉(zhuǎn)換器MCP3201的數(shù)據(jù)的時域表示,
產(chǎn)生了有趣的周期信號。此信號源可追溯到電源


圖3 電源噪聲充分降低后,MCP3201的輸出碼
一直是一個碼,2108

本文要論述的電路如圖1所示。

電源噪聲
電路應(yīng)用中的常見干擾源來自電源,這種干擾信號通常通過有源器件的電源引腳引入。例如,圖1中A/D轉(zhuǎn)換器輸出的時序圖如圖2所示。在此圖中,A/D轉(zhuǎn)換器的采樣速度是40ksps,進行了4096次采樣。
在此例中,儀表放大器、參考電壓源和A/D轉(zhuǎn)換器上沒有加旁路電容。另外,電路的輸入都是以一個低噪聲、2.5V的直流電壓源作為基準(zhǔn)。
對電路的深入研究表明,時序圖上看到的噪聲源來自于開關(guān)電源。電路中添加了旁路電容和扼流環(huán)。電源上加了一個10mF的電容,并且在盡可能靠近有源元件的電源引腳旁放置了三個0.1mF的電容。在產(chǎn)生的新時序圖上可以看到,產(chǎn)生了穩(wěn)定的直流輸出,圖3所示的柱狀圖可驗證這一點。數(shù)據(jù)顯示,電路的這些更改消除了來自電路信號路徑的噪聲源。

造成干擾的外部時鐘
其它系統(tǒng)噪聲源可能來自時鐘源或電路中的數(shù)字開關(guān)。如果這種噪聲與轉(zhuǎn)換過程有關(guān),它不會作為轉(zhuǎn)換過程中的干擾出現(xiàn)。但是,如果這種噪聲與轉(zhuǎn)換過程無關(guān),采用FFT(快速傅立葉變換)分析,可以很容易發(fā)現(xiàn)這種噪聲。


圖4 耦合到模擬走線的數(shù)字噪聲有時被誤解為寬帶噪聲。FFT圖可以很容易識別這種所謂 “噪聲”的頻率,因此可識別出噪聲源


圖5 放大器輕微過激勵,會使信號產(chǎn)生失真。通過這種轉(zhuǎn)換的FFT圖,可以很快發(fā)現(xiàn)信號的失真

時鐘信號干擾的示例可參見圖4所示的FFT圖。此圖使用了圖1所示的電路,并添加了旁路電容。在圖4所示的FFT圖中看到的激勵,由上的19.84MHz時鐘信號產(chǎn)生。在此例中,布線時幾乎沒有考慮走線之間的耦合作用,在FFT圖中可以看到忽略此細(xì)節(jié)的結(jié)果。
這個問題可以通過修改布線來解決,將高阻抗模擬走線遠(yuǎn)離數(shù)字開關(guān)走線;或者在模擬信號路徑中,在A/D轉(zhuǎn)換器之前加抗混疊濾波器。走線之間的隨機耦合在某種程度上更難以發(fā)現(xiàn),在這種情況下,時域分析可能比較有效。

放大器使用不恰當(dāng)
回到圖1所示的電路,在儀表放大器的正相輸入端施加一個1kHz的交流信號。此信號不是壓力傳感的特性,但是可以采用這個示例來說明模擬信號路徑中器件的影響。
圖5所示的FFT圖顯示了施加上述條件后的電路性能。注意基波看起來有失真,許多諧波也有同樣的失真。失真是由于使放大器輕微過激勵引起的。解決此問題的方法是降低放大器增益。

結(jié)語
解決信號完整性問題可能會花費很多時間,尤其是當(dāng)工程師沒有工具來解決棘手的問題時。在“竅門箱”中有三種最佳的分析工具:頻域分析工具(FFT)、時域分析工具(示波器照片)和直流分析工具(柱狀圖)。工程師可以用這些工具來識別電源噪聲、外部時鐘源和過激勵放大器失真?!?/P>



關(guān)鍵詞: pcb PCB 電路板

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉