考研數(shù)學(xué)線性代數(shù)各章節(jié)復(fù)習(xí)重點
第一章 行列式
本文引用地址:http://butianyuan.cn/article/82985.htm考試內(nèi)容:行列式的概念和基本性質(zhì),行列式按行(列)展開定理。
考試要求:1、了解行列式的概念,掌握行列式的性質(zhì)。2、會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。
第二章 矩陣
考試內(nèi)容:矩陣的概念,矩陣的線性運算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價分塊矩陣及其運算。
考試要求:1、理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。2、掌握矩陣的線性運算、乘法、轉(zhuǎn)置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3、理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4、了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5、了解分塊矩陣及其運算。
新大綱變化:矩陣一章增加了一個知識點“分塊矩陣及其運算”。
解析及應(yīng)對策略:08年大綱增加了“分塊矩陣及其運算”,從而達(dá)到了與數(shù)學(xué)一、數(shù)學(xué)三和數(shù)學(xué)四對矩陣要求相統(tǒng)一。從考試內(nèi)容和考試要求上看,該知識點的增加其實是對矩陣內(nèi)容考察的更加完善,充分體現(xiàn)了研究生入學(xué)考試的嚴(yán)謹(jǐn)性及對學(xué)生的綜合能力的考察。這部分內(nèi)容的增加,加大了對數(shù)學(xué)二同學(xué)矩陣方面的要求。同學(xué)們在復(fù)習(xí)這部分內(nèi)容的時候,結(jié)合分塊矩陣的定義及分塊矩陣的運算性質(zhì)。還要對矩陣的幾種運算要熟練,比如:對分塊矩陣求逆矩陣,分塊矩陣的四則運算法則等,做到全面不遺漏。
第三章 向量
考試內(nèi)容:向量的概念,向量的線性組合和線性表示,向量組的線性相關(guān)和線性無關(guān),向量組的極大線性無關(guān)組,等價的向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無關(guān)向量組的的正交規(guī)范化方法。
考試要求:1、理解n維向量、向量的線性組合與線性表示的概念。2、理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。3、了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩。4、了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。5、了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。
第四章 線性方程組
考試內(nèi)容:線性方程組的克萊姆(Cramer)法則,齊次線性方程組有一非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的通解
考試要求:1、會用克萊姆法則。2、理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3、理解齊次線性方程組的基礎(chǔ)解系、通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法。4、理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5、會用初等行變換求解線性方程組。
第五章 矩陣的特征值及特征向量
考試內(nèi)容:矩陣的特征值和特征向量的概念,性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值,特征向量及其相似對角矩陣。
考試要求:1、理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。2、理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。3、掌握實對稱矩陣的特征值和特征向量的性質(zhì)。
第六章 二次型
考試內(nèi)容:二次型及其矩陣表示,合同變換和合同矩陣,二次型的秩,慣性定理,二次型的標(biāo)準(zhǔn)形和規(guī)范形,用正交變換和配方法化二次型為標(biāo)準(zhǔn)形,二次型及其矩陣的正定性。
考試要求:1、了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。2、了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。3、理解正定二次型、正定矩陣的概念,并掌握其判別法。
評論