博客專欄

EEPW首頁 > 博客 > 僅頭發(fā)絲1/200厚度!科學(xué)家用銀線團搭建「納米線網(wǎng)絡(luò)」,觸電就像大腦一樣運作

僅頭發(fā)絲1/200厚度!科學(xué)家用銀線團搭建「納米線網(wǎng)絡(luò)」,觸電就像大腦一樣運作

發(fā)布人:傳感器技術(shù) 時間:2023-05-01 來源:工程師 發(fā)布文章
【導(dǎo)讀】來自悉尼大學(xué)和日本國家材料科學(xué)研究所的科學(xué)家們在自然通訊上發(fā)文:通過納米線網(wǎng)絡(luò)能夠模擬人類大腦對于電信號的應(yīng)激反應(yīng),這可能為人工智能領(lǐng)域打開一扇新的大門。

如今主流的人工智能技術(shù)從某種意義上來講是受到大腦結(jié)構(gòu)的啟發(fā)而發(fā)明的。

然而隨著計算機算力的不斷提升,計算機的AI計算已經(jīng)與人腦有了本質(zhì)的區(qū)別:與人類大腦相比,AI通過在大數(shù)據(jù)中尋找模型規(guī)律的能力是人類大腦遠不能及的。

圖片

但是人類的大腦顯然不相信「大力出奇跡」,并且大腦處理的信息往往都是稀疏、復(fù)雜而且時時都在劇烈變化的。

這也是如今不少AI科學(xué)家們夢寐以求的特性。最近,來自悉尼大學(xué)和日本國家材料科學(xué)研究所的科學(xué)家們在自然通訊上發(fā)表論文,試著通過使用納米線網(wǎng)絡(luò)(NWN)來模擬人類大腦在受到電激時的反應(yīng),實驗效果還不錯。

所謂納米線網(wǎng)絡(luò)是由一堆平均長度不超過10微米,直徑不超過500納米的銀納米團隨機鋪在晶圓上,并且在上面覆蓋一層約1納米厚的絕緣聚合物。

圖片

與傳統(tǒng)的集成電路不同的是,當(dāng)電流流經(jīng)網(wǎng)絡(luò)時,將引起銀離子在聚合物中遷徙,從而在流經(jīng)不同的類似突觸結(jié)構(gòu)時,便會產(chǎn)生與人類大腦類似的反應(yīng)。 

這也為從微觀物理結(jié)構(gòu)角度來解釋大腦的工作原理打下了基礎(chǔ)。

圖片

研究團隊的最新結(jié)果表明,將納米線網(wǎng)絡(luò)保持在一個類似「混沌邊緣」的狀態(tài),在處理任務(wù)時可以獲得相當(dāng)高效而且理想的結(jié)果。

這似乎為人工智能計算打開了新的大門。 

圖片

    納米線網(wǎng)絡(luò)模型


研究人員利用含有PVP涂層的自組裝銀納米線形成高度無序、復(fù)雜的網(wǎng)絡(luò)拓撲。NWN作為一種神經(jīng)形態(tài)設(shè)備,在整個網(wǎng)絡(luò)的固定電極位置之間應(yīng)用偏壓操作。

為了更深入地了解神經(jīng)形態(tài)動力學(xué),研究人員開發(fā)了一個物理驅(qū)動的 Ag PVP NWN 計算模型。

圖片

▲圖a. 自組裝銀納米線光學(xué)顯微鏡圖像(1:100微米)

圖c. Gjn對∣Λ∣的非線性相關(guān)性,即產(chǎn)生類似開關(guān)的交界動態(tài)


當(dāng) 0 ≤ ∣Λ∣ < Λcrit 時為絕緣。當(dāng)∣Λ∣ 接近 Λcrit 時,交界處過渡到隧穿狀態(tài),其中電導(dǎo)隨 ∣Λ∣ 的增加呈指數(shù)增長。 

接下來,論文介紹了使用該模型做的模擬實驗,分析該神經(jīng)形態(tài)系統(tǒng)的網(wǎng)絡(luò)級動態(tài)。

    NWN的自適應(yīng)


圖片▲圖a. 初始不活動的 NWN(所有交界處 Λ = 0)的 DC 激活曲線

圖b. NWN 的快照可視化,顯示第一傳輸通路的形成,對應(yīng)到最短路徑長度 n。

圖c. 穩(wěn)態(tài)網(wǎng)絡(luò)電導(dǎo) 


該部分的研究結(jié)果表明,NWN能夠自適應(yīng)地響應(yīng)外部驅(qū)動,并且可以在雙穩(wěn)態(tài)(LCS和HCS)之間進行一階相變。這些全局網(wǎng)絡(luò)動態(tài)狀態(tài)源于節(jié)點之間的循環(huán)連接及其切換狀態(tài)。

    節(jié)點切換驅(qū)動非本地傳輸


網(wǎng)絡(luò)激活或去激活可以理解為節(jié)點之間的循環(huán)連接中出現(xiàn)的集體效應(yīng)。

根據(jù)基爾霍夫定律(KVL),所有進入某節(jié)點的電流總和等于所有離開這節(jié)點的電流總和;沿著閉合回路所有元件兩端的電壓的代數(shù)和等于零。

經(jīng)過一系列交匯點的切換,實驗結(jié)果表明,傳輸通路的出現(xiàn)是因為復(fù)雜網(wǎng)絡(luò)拓撲結(jié)構(gòu)和憶阻連接點切換之間產(chǎn)生的耦合。當(dāng)連接點過渡到導(dǎo)電狀態(tài)時,會引發(fā)級聯(lián)活動,自適應(yīng)地重新將電壓分配到周圍。

    雪崩開關(guān)動力學(xué)


圖片

研究團隊發(fā)現(xiàn),在神經(jīng)元群和其他神經(jīng)形態(tài)系統(tǒng)中,具有無標(biāo)度大小和生命周期事件統(tǒng)計數(shù)據(jù)的雪崩,這是臨界動力學(xué)的一個標(biāo)志。

通過改變遠離閾值Vth的驅(qū)動電壓強度,雪崩分布開始偏離冪律。

圖片

當(dāng)V*<1時,網(wǎng)絡(luò)中無法形成通路,切換會導(dǎo)致小規(guī)模雪崩(圖中黑點所示)。 

當(dāng)V*接近1時,分布延長,成為冪律(圖中紅點所示)。

當(dāng)V*=1時,即網(wǎng)絡(luò)激活時,雙峰分布明顯,雪崩特征明顯且出現(xiàn)在冪律尾部。

隨著網(wǎng)絡(luò)規(guī)模增加,凸起相對于冪律區(qū)域的概率密度也會增加。這表明這些異常大的雪崩符合超臨界狀態(tài)。

    用信號控制網(wǎng)絡(luò)狀態(tài)


在不同的電信號刺激下,納米線網(wǎng)絡(luò)呈現(xiàn)出了不同狀態(tài)的反應(yīng)。想要讓納米線網(wǎng)絡(luò)呈現(xiàn)出「邊緣混沌」?fàn)顟B(tài),需要令驅(qū)動系統(tǒng)的交流電信號的李雅普諾夫指數(shù)λ≈0。 

圖片

當(dāng)λ≈0的時候,系統(tǒng)會進入到「邊緣混沌」?fàn)顟B(tài)

另外研究還發(fā)現(xiàn),當(dāng)慢速驅(qū)動時,網(wǎng)絡(luò)能夠適應(yīng)并維持擾動幅度,而當(dāng)快速驅(qū)動時,網(wǎng)絡(luò)則無法適應(yīng)擾動,并且會導(dǎo)致相鄰網(wǎng)絡(luò)節(jié)點分離。而頻率的快慢則取決于信號的幅度以及網(wǎng)絡(luò)的結(jié)構(gòu)(大小和密度)。而在擾動收縮和擾動增長之間的動態(tài)平衡機制,則可以維持系統(tǒng)的穩(wěn)定性。

所以通過調(diào)整驅(qū)動信號來控制系統(tǒng)狀態(tài),可以令納米線網(wǎng)絡(luò)維持在理想的狀態(tài)下。

    納米線網(wǎng)絡(luò)初試鋒芒


為了驗證納米線網(wǎng)絡(luò)的性能,研究團隊使用它進行了簡單的波形變換工作。

將正弦波輸入網(wǎng)絡(luò),通過線性回歸模型來訓(xùn)練不同目標(biāo)的波形,最后將納米線電壓作為輸出??梢垣@得下圖的波形:

圖片

可以驗證,不同的λ值對應(yīng)著不同的變換精度,當(dāng)λ≈0時,系統(tǒng)精度達到了0.95,對于方形波而言,當(dāng)網(wǎng)絡(luò)處于「混沌」?fàn)顟B(tài)時(λ>0),精度會迅速下降。根據(jù)不同復(fù)雜度的計算任務(wù),系統(tǒng)的計算精度展現(xiàn)出不同的變化,但是當(dāng)系統(tǒng)處于「混沌邊緣」?fàn)顟B(tài)時,表現(xiàn)最為出色。

總而言之,納米線神經(jīng)網(wǎng)絡(luò)可以通過控制輸入信號的控制下可以在有序和混沌狀之間進行調(diào)整,這表明納米線網(wǎng)絡(luò)可以調(diào)整成為與大腦類似的,多樣化的動力學(xué)機制,在信息處理以及人工智能的相關(guān)計算領(lǐng)域潛力巨大。

對于傳統(tǒng)的人工智能網(wǎng)絡(luò)而言,計算機在訓(xùn)練網(wǎng)絡(luò)算法時需要判斷給哪個節(jié)點分配適量的負載,而這套系統(tǒng)則不需要類似的算法,因為納米線網(wǎng)絡(luò)可以自動適應(yīng)并分配節(jié)點的負載。

這可以節(jié)省許多的計算資源,還能夠降低AI計算的碳足跡,發(fā)表這項研究的科學(xué)家說到。

目前這份研究的代碼已經(jīng)在Github上開源,有興趣的讀者可以移步:https://github.com/joelhochstetter/NWNsim 
來源:腦機接口社區(qū)


*博客內(nèi)容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點,如有侵權(quán)請聯(lián)系工作人員刪除。



關(guān)鍵詞: 科學(xué)家

相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉