新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 新型高頻開關(guān)充電電源研究

新型高頻開關(guān)充電電源研究

作者: 時(shí)間:2011-03-16 來源:網(wǎng)絡(luò) 收藏

3)變壓器原邊繞組在方波脈沖的正負(fù)半周都工作,故繞組利用率高。 4)管截止期間承受電壓低,僅為輸入直流電壓值。

5)抗不平衡能力強(qiáng)。當(dāng)管特性不一致或?qū)〞r(shí)間不一致時(shí),不會(huì)引起“單向偏磁”現(xiàn)象,這是推挽式和橋式變換器都不具備的一個(gè)突出優(yōu)點(diǎn)。

3控制系統(tǒng)設(shè)計(jì)

3.1直流系統(tǒng)供電及蓄電池對(duì)控制系統(tǒng)的要求

1)在電網(wǎng)正常運(yùn)行時(shí),開關(guān)向直流系統(tǒng)供電并給蓄電池浮充電,此時(shí)要求輸出電壓有良好的穩(wěn)壓特性。

2)當(dāng)蓄電池容量欠虧時(shí),需進(jìn)行補(bǔ)充充電,為提高充電速度,需采取恒流充電方式,此時(shí)則要求有良好的穩(wěn)流特性。

3)能在一定范圍內(nèi)實(shí)現(xiàn)對(duì)電流、電壓的連續(xù)調(diào)節(jié)。 4)各種充電方式能自動(dòng)轉(zhuǎn)換。

5)蓄電池充滿時(shí)能自動(dòng)停充。

6)能對(duì)電流、電壓、溫度等各種參數(shù)進(jìn)行檢測(cè)以及作出判斷,并采取相應(yīng)保護(hù)措施。

7)具有四遙功能,即要求在遠(yuǎn)方設(shè)定參考值、測(cè)量充電電流和充電電壓,并且對(duì)系統(tǒng)運(yùn)行方式進(jìn)行遠(yuǎn)方控制,還能實(shí)現(xiàn)對(duì)工作狀態(tài)和故障信號(hào)等的遠(yuǎn)方采集。

3.2控制系統(tǒng)組成

如圖2所示,高頻開關(guān)充電電源的控制系統(tǒng)主要由取樣電路、信號(hào)變換電路、檢測(cè)保護(hù)電路、PWM信號(hào)生成電路和驅(qū)動(dòng)電路等組成。取樣電路從主電路的輸出采集電流、電壓等信號(hào),采樣信號(hào)與給定值進(jìn)行比較后得到的差值信號(hào)經(jīng)過誤差放大器進(jìn)行放大,以便調(diào)整PWM信號(hào)生成電路的輸出信號(hào)脈寬。檢測(cè)保護(hù)電路通過檢測(cè)蓄電池的溫度、端電壓變化、出氣率以及輸入、輸出電路的過壓、過流等情況,使PWM生

()


圖3逆變控制信號(hào)的形成原理


成電路改變輸出脈寬或終止脈沖輸出。驅(qū)動(dòng)電路用于對(duì)PWM信號(hào)生成電路的輸出PWM信號(hào)進(jìn)行功率放大,以滿足高頻開關(guān)管門(柵)極驅(qū)動(dòng)要求,同時(shí)實(shí)現(xiàn)控制電路與主電路的隔離。

3.3逆變控制電路

逆變控制電路包括PWM脈沖形成電路及IGBT驅(qū)動(dòng)電路。為了實(shí)現(xiàn)對(duì)直流系統(tǒng)的遙信、遙測(cè)、遙控和遙調(diào),并且滿足高頻開關(guān)充電電源高頻變換控制的要求,本方案采用INTEL公司生產(chǎn)的87C196KC型單片機(jī)作為主控芯片。87C196KC軟硬件資源豐富,內(nèi)含8路A/D轉(zhuǎn)換輸入通道和3路PWM信號(hào)輸出口,速度快、效率高、功能齊全[3]。它不僅能完全取代模擬控制器,方便地實(shí)現(xiàn)PID調(diào)節(jié),而且可以通過改變軟件實(shí)現(xiàn)諸如自適應(yīng)控制、智能控制等各種控制策略。此外,還可利用其通信接口與其他微機(jī)進(jìn)行通信,便于實(shí)現(xiàn)遠(yuǎn)方監(jiān)控。

采用87C196KC型單片機(jī),有兩種方法可以實(shí)現(xiàn)PWM控制信號(hào)的輸出:其一是通過PWM信號(hào)輸出口。此時(shí),信號(hào)的最高開關(guān)頻率為31.25kHz(16M晶振),這樣開關(guān)電源實(shí)際能達(dá)到的開關(guān)頻率為15.625kHz。然而,高頻開關(guān)充電電源的開關(guān)頻率在20kHz以上,所以這種方法雖然軟件開銷小,卻不能滿足高頻開關(guān)電源對(duì)開關(guān)頻率的要求。另一種方法是采用高速輸出口HSO實(shí)現(xiàn)。HSO輸出的PWM信號(hào)頻率可調(diào),但控制精度較低,而且軟件開銷很大。由上可知,87C196KC輸出的PWM信號(hào)都不適宜直接作為高頻開關(guān)充電電源的逆變控制信號(hào),因此,本方案采用專用的集成PWM控制器SG3525產(chǎn)生PWM脈沖。其實(shí)現(xiàn)原理如圖3所示。

在圖3中,87C196KC的PWM0口作為模擬輸出接口(D/A轉(zhuǎn)換)。經(jīng)CPU運(yùn)算后得到的占空比控制信號(hào)由PWM0口輸出,并被轉(zhuǎn)換電路變換為直流電壓信號(hào),然后再被加到集成PWM控制器(SG3525)的輸入端口上。集成控制器產(chǎn)生兩路相位相反的PWM信號(hào),信號(hào)經(jīng)驅(qū)動(dòng)電路隔離放大后便可控制高頻開關(guān)管(IGBT)的通斷。

SG3525帶有軟啟動(dòng)電路、基準(zhǔn)電壓源、誤差放大器、PWM比較器、欠壓鎖定電路、輸出限流和關(guān)斷電路、輸出驅(qū)動(dòng)電路等,驅(qū)動(dòng)能力達(dá)到100mA。在本文的控制方案中,誤差放大器接為電壓跟隨器方式,閉環(huán)控制功能由單片機(jī)完成。

驅(qū)動(dòng)電路采用EXB841集成芯片[4]。它采用單電源工作,內(nèi)裝有高隔離電壓(2500V)的光電耦合器、過流檢測(cè)和過流保護(hù)低速切斷電路以及驅(qū)動(dòng)電路,其信號(hào)延遲最大1.5μs,適用于在40kHz以下頻段工作。其額定工作電壓為25V,光耦合器輸入電流額定值10mA,顯然,SG3525的輸出信號(hào)可與之配合。光耦合器的輸出電流為4A,輸出電壓為0~20V,完全能滿足IGBT對(duì)柵極驅(qū)動(dòng)信號(hào)的要求。

4結(jié)語

本文針對(duì)應(yīng)用于變電站直流系統(tǒng)的高頻開關(guān)充電電源展開討論,主要介紹了其主電路和逆變控制電路。表明,半橋式高頻開關(guān)充電電源主電路抗不平衡能力強(qiáng)、變壓器利用率高、輸出功率較大、相應(yīng)的驅(qū)動(dòng)電路不太復(fù)雜,是高頻開關(guān)充電電源較為理想的主電路形式。以87C196KC型單片機(jī)和SG3525型集成PWM控制器為主構(gòu)成的逆變控制電路響應(yīng)速度快、控制精度高,具有比較優(yōu)勢(shì)。由于采用87C196KC作為主控芯片,充電電源控制系統(tǒng)的各種監(jiān)控功能齊備,完全能滿足變電站綜合自動(dòng)化技術(shù)對(duì)直流系統(tǒng)性能的要求。


上一頁(yè) 1 2 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉