新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 寬帶放大器的設計方法以及仿真

寬帶放大器的設計方法以及仿真

作者: 時間:2012-01-25 來源:網(wǎng)絡 收藏

通過理想的計算,該設計選用了6×30μm的增強型PHEMT器件,Craig Moore的198?年的設計中在MESFET管的漏極增加了一些額外的匹配元件,以保證有效輸出電容和柵極輸入容抗相同。此時輸入和輸出的集總參數(shù)傳輸線將是對稱的,其相位延遲也相同。文章還比較了這種輸入輸出傳輸線對稱的匹配方案和另一種漏級電容獨立優(yōu)化的方案(漏極電感和柵極不對稱)。對于這個簡單的3級PHEMT設計,柵極和漏極輸入線的相移差別很小,這里就采用較簡單的非對稱方案。如果輸入輸出傳輸線的相位差較大,這種方案的就不能有效的合并各級的增益。下一步使用TriQuint公司提供的電感、電阻、電容以及互連線模型取代理想元件,進行更真實的。圖3顯示了期望的最終放大電路的增益、匹配度、穩(wěn)定因子和噪聲系數(shù)。中采用了30mA和3.3V的直流偏置設計,以限制其功耗在100mW以內,并實現(xiàn)了輸出功率和三階互調截止點的折中。圖4是該電路的版圖,同時還包含了兩個有探針接入端的測試模型管:一個是設計中采用的6×30μm增強型PHEMT,另一個是普通的6×50μm耗盡型PHEMT。

本文引用地址:http://www.butianyuan.cn/article/186952.htm

  圖4:3級分布式放大器的版圖(包括180μm柵寬的增強型測試建模管和一個300μm柵寬的耗盡型測試建模管)。

  一個典型的分布式放大其中有一半的功率被輸出傳輸線的50歐負載所吸收,為了提高輸出效率,人們通常采用一些技巧,如漸縮型傳輸線方法。本設計采用了50歐姆輸入輸出線,為了減少DC功率的消耗,該傳輸線的一端的50歐姆終結負載和一個較大的電容(25pF)串聯(lián)后,再通過通孔接地,這樣既能保證射頻信號接地,又能實現(xiàn)隔直流的效果。漏極較大的直流供電電流只流經(jīng)低阻抗的電感元件,而不是50歐的終結負載(如圖5),這樣可以有效的減小50歐終結電阻上的功耗。這里漏極電感的大小也是一個重要的設計參數(shù),該電感直接影響電路在1GHz附近的低頻滾降速度,如果增大電容將會減小滾降速度,但是同時會增加串聯(lián)電阻,從而提高直流功耗,而且較大的電感也會增大版圖面積。

  在提交產線流片之前,各設計還必須經(jīng)過嚴格的設計規(guī)則檢查DRC(design-rule check),自198?年第一次MMIC設計課程開始,約翰·霍普金斯大學就采用ICED(ICEDitor)軟件,并采用TriQuint提供的DRC規(guī)則進行設計規(guī)則檢查。另外還使用了“版圖轉電路圖”LVS(Layout Versus Schematic)工具進一步比較從ADS中提取出來的網(wǎng)表是否符合ICED軟件中的實際電氣連接。有時設計雖然能通過DRC檢查,但是仍然會有一些致命的錯誤,只有LVS工具才能發(fā)現(xiàn)這些問題。新版本的ADS已經(jīng)具備內置的連接性檢查功能,可以排除一些連接性錯誤,但是外部的LVS檢測仍然是很有必要的。

  圖5:分布式放大器電路的直流等效電路,可以看出流經(jīng)電感L35的電流只引起很小的壓降。

  圖6:實測的輸出功率和效率結果。
 表1:PHEMT分布式放大器在3.3V電壓和25mA電流偏置下的各項指標實測結果。

  圖6和表1是整個電路的實際測試結果。可以看到在3.3V的24mA直流供電下,該電路達到了10%的功率附加增益PAE(Power Added Effeciency)以及+10dBm的輸出功率。噪聲系數(shù)的實測值和仿真值也很接近(圖7),在5到6GHz頻段,噪聲系數(shù)僅為2dB,這在具備1~10GHz的10倍頻程(decade)帶寬的電路中算是很出色的表現(xiàn)了。54平方密爾(mil-square)的芯片上還放置了很多其它器件,包括一個設計中采用的6×30μm增強型PHEMT測試建模管。在3V和3.3 V電壓下,8~9mA電流時,分別測試了這個模型管,并將其S參數(shù)用于電路進行二次仿真。圖8為該PHEMT模型管的版圖。圖9和圖10則是針對測試管的實測和仿真數(shù)據(jù)的比較。由于測試的參考面不同,測試模型管的寄生參數(shù)和實際電路中使用的晶體管有微小的區(qū)別,正是這些巨別導致了測試值和再仿真結果(使用ADS和Sonnet軟件)在高頻段有一些差別。對以單獨的6×30μm模型管而言,其實測值和使用TOM模型的ADS仿真值非常接近。

  圖7:使用噪聲分析儀測試的增益和噪聲系數(shù),和ADS仿真的結果對比。

  圖8:6×30μm柵寬的增強型PHEMT測試建模管的版圖。

  圖9:實測的(藍色)增強型PHEMT測試建模管的前向傳輸參數(shù)S21和仿真結果(紅色)的對比。

  MMIC建模非常復雜,例如,在仿真時是否可以忽略互連線的影響。忽略互連線可以極大的簡化設計,而且在2.4GHz以下,互聯(lián)的影響很小。通常這些互聯(lián)微帶線的模型都是在其長度超過幾倍襯底厚度的情況下建模的,而實際MMIC設計中很少會發(fā)生這種情況。典型的微帶線模型一般都會高估其長度(即電感)效應。另外,還要考慮是否需要一個電磁仿真,以確保原始設計中忽略的寄生參數(shù)不會有太大的影響。除非設計者確實想壓縮版圖面積,否則采用3到5倍的線寬(而不是3到5倍的襯底厚度)做為元件間隔,一般都不會有問題。



評論


相關推薦

技術專區(qū)

關閉