新聞中心

EEPW首頁 > EDA/PCB > 設計應用 > 基于MCU-FPGA的風光逆變并網系統(tǒng)設計

基于MCU-FPGA的風光逆變并網系統(tǒng)設計

作者: 時間:2012-07-18 來源:網絡 收藏

摘要:為了緩解能源問題,在完全兼容現有供電系統(tǒng)的基礎上,該系統(tǒng)采用風能和太陽能對電能進行補給的方法,并且附帶快速檢測孤島效應,快速和斷網的功能。系統(tǒng)的功率電路部分采用全橋拓撲進行,數字控制系統(tǒng)采用構架。由全硬件完成對外網市電的倍頻工作,再由FPGA動態(tài)調整系統(tǒng)輸出相位,讓輸出和外網市電實現同相位。MCU完成對太陽能電池板的最大功率點追蹤(MPPT),發(fā)電端電壓欠壓檢測以及孤島效應檢測等功能。針對電力系統(tǒng)強電的特性并結合當今熱門的物聯網技術,該系統(tǒng)人性化地設計了無線檢測的功能,用戶能通過手機,計算機或者手持式終端就可以了解當前系統(tǒng)狀態(tài)。該系統(tǒng)創(chuàng)造性的設計方式既可以用于電廠的多能源并行發(fā)電,也適合家用,讓家庭從用電的角色轉變微型發(fā)電廠,從而大大的緩解能源問題。
關鍵詞:風能;太陽能;孤島效應;最大功率追蹤;物聯網

0 引言
近二百年來,人類利用煤、石油及天燃氣作為能源,使生產力提高近200倍。然而化石能源逐步枯竭,而且污染等也很嚴重。隨著能源問題的日益突出,尋找新型綠色能源已經是刻不容緩的問題。而在公認的綠色能源中,數太陽能和風能是最容易獲取并高效利用的能源。
本文以太陽能,風能為中心,設計一個發(fā)電的模擬裝置,能夠將太陽能或者風能發(fā)電機的直流電壓轉換為交流電,并檢測外網交流電的頻率和相位,動態(tài)的調整自己的交流電的波形,使得與外網電能同頻同相。該裝置在設計時考慮了發(fā)電機的內阻。在測試時以60 V直流穩(wěn)壓電源模擬理想的太陽能電池板或者風力發(fā)電機,電源輸入級串聯一個30 Ω功率電阻模擬發(fā)電部分的內阻。
該裝置體積小巧,成本低廉,易于量產,人界交互界面友好,并附帶輸入電壓監(jiān)控,輸出過流監(jiān)控實時動態(tài)相位監(jiān)控等多種監(jiān)控設置也使得該裝置安全性能很好。稍加改動即可廣泛應用。

1 方案論證
1.1 主功率電路拓撲方案
方案一:全橋。
全橋由4只功率開關管管組成,分為2組,其中Q1和Q4為一組,Q2和Q3為一組,兩組交替通斷,輸出交流方波電壓經LC低通濾波器后得到交流正弦輸出電壓(見圖1)。全橋型器的輸出濾波電容電壓連續(xù)可測的。該電路輸出經LC濾波后便能得到很好的波形。

本文引用地址:http://www.butianyuan.cn/article/190140.htm

a.JPG


方案二:雙Boost DC/AC單級變換電路拓撲結構。
該結構由2個對稱的電流雙向流動的Boost DC/DC變換電路組成(見圖2)。負載R跨接在兩個電容之間,通過兩邊電流的雙向流動,從而在負載上實現交流工頻電壓輸出的效果。開關M1~M4均為由MOSFET和二極管組成的能量可以雙向流動的可控開關。由于電路工作在完全對稱的狀態(tài)下,因此對L1和L2的選擇特別敏感,如果不對稱則會照成輸出波形失真。
方案二在正弦的正半軸和負半軸是兩個濾波電路完成的,所以在波形的失真度上完成有難度,而方案一是由同一個電感濾波得到的,濾波后正弦失真度非常小。故采用方案一。
1.2 正弦波產生方案
方案一:采用專用SPWM芯片實現逆變。
目前的SPWM專用芯片外圍電路簡單,易于實現。但是很難完成本系統(tǒng)中對市電相位追蹤和調整。故不采用本方案。
方案二:使用FPGA生成SPWM波形。
此方案的優(yōu)點是容易精確方便地控制輸出正弦波的相位和幅度,而且外圍電路更加簡單,靈活方便。相對于方案一更優(yōu)化,故選擇此方案。
1.3 整體系統(tǒng)設計構架方案
總結上述選擇的方案,這里選擇以數字電路為主,配合簡潔的模擬電路的結構。充分的把數字的高集成度,高準確度,高性價比和高穩(wěn)定性的特點和模擬大功率的特點有機的結合,較好地實現了設計要求。并且拓展了無線監(jiān)測功能,更加真實表現了本設計的實際應用環(huán)境和展現更加人性化的設計??傮w方案見圖3。

b.JPG


風力發(fā)電機相關文章:風力發(fā)電機原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉