新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 基于FPGA的恒溫晶振頻率校準(zhǔn)系統(tǒng)的設(shè)計(jì)

基于FPGA的恒溫晶振頻率校準(zhǔn)系統(tǒng)的設(shè)計(jì)

作者: 時(shí)間:2010-10-09 來源:網(wǎng)絡(luò) 收藏

摘 要: 為滿足三維大地電磁勘探技術(shù)對(duì)多個(gè)采集站的同步需求,基于設(shè)計(jì)了一種晶振。可以調(diào)節(jié)各采集站的恒溫壓控晶體振蕩器同步于GPS,從而使晶振能夠輸出高準(zhǔn)確度和穩(wěn)定度的同步信號(hào)。中使用設(shè)計(jì)了高分辨率的時(shí)間間隔測(cè)量單元,達(dá)到0.121 ns的測(cè)量分辨率,能對(duì)晶振分頻信號(hào)與GPS秒脈沖信號(hào)的時(shí)間間隔進(jìn)行高精度測(cè)量,縮短了時(shí)間。同時(shí)在內(nèi)部使用PicoBlaze嵌入式軟核處理器監(jiān)控系統(tǒng)狀態(tài),并配合滑動(dòng)平均濾波法對(duì)測(cè)量得到的時(shí)間間隔數(shù)據(jù)實(shí)時(shí)處理,有效地抑制了GPS秒脈沖波動(dòng)對(duì)的影響。

本文引用地址:http://butianyuan.cn/article/191538.htm

  三維大地電磁勘探技術(shù)是以面元為單位,多分量采集站為中心,多遠(yuǎn)參考、互參考和密集布點(diǎn)為特征來獲得高質(zhì)量的采集數(shù)據(jù)。野外施工時(shí),為了保持站點(diǎn)間同步地進(jìn)行數(shù)據(jù)采集,一般采用GPS秒脈沖信號(hào)或的定時(shí)信號(hào)來同步各個(gè)采集站點(diǎn)。前者在惡劣的施工環(huán)境下常會(huì)因?yàn)楦鞣N干擾而發(fā)生跳變,同步效果并不理想。后者長時(shí)間存在頻率漂移,同樣無法維持長時(shí)間的同步采集。

  為解決以上問題,本文將GPS授時(shí)信號(hào)用于校準(zhǔn)各站點(diǎn)的壓控晶振,之后再使用晶振分頻得到定時(shí)信號(hào)來同步各采集站點(diǎn)。這樣不僅克服了GPS授時(shí)信號(hào)易受外界干擾的缺點(diǎn),也解決了晶振頻率隨時(shí)間漂移的問題,能獲得較為理想的同步信號(hào)。為了使本地晶振長時(shí)間地同步于GPS系統(tǒng),就需要不斷測(cè)量GPS授時(shí)信號(hào)與本地晶振的分頻信號(hào)的時(shí)間間隔,再根據(jù)測(cè)量數(shù)據(jù)來校準(zhǔn)和同步本地晶振。因此,時(shí)間間隔測(cè)量的準(zhǔn)確性是保證頻率校準(zhǔn)系統(tǒng)工作性能的關(guān)鍵。本文基于FPGA集成度高、高速和高可靠性的特點(diǎn),介紹了晶振頻率校準(zhǔn)系統(tǒng)在FPGA中的設(shè)計(jì)方法。系統(tǒng)的特點(diǎn)是使用FPGA內(nèi)部進(jìn)位邏輯構(gòu)造延遲線來實(shí)現(xiàn)時(shí)間間隔測(cè)量,大大提高了測(cè)量分辨率,同時(shí)使用FPGA嵌入式軟核處理器PicoBlaze對(duì)系統(tǒng)狀態(tài)進(jìn)行監(jiān)控,并對(duì)測(cè)量數(shù)據(jù)進(jìn)行濾波處理,充分發(fā)揮了FPGA的集成優(yōu)勢(shì)。

  1 系統(tǒng)設(shè)計(jì)

  1.1 系統(tǒng)實(shí)現(xiàn)方案

  系統(tǒng)的原理如圖1所示,主要由GPS接收模塊、FPGA測(cè)控模塊、D/A轉(zhuǎn)換模塊和壓控4部分組成。GPS接收模塊用于輸出標(biāo)準(zhǔn)的1-pps脈沖信號(hào),F(xiàn)PGA測(cè)控模塊用于測(cè)量本地晶振分頻信號(hào)與1-pps信號(hào)的時(shí)間間隔,并將所測(cè)值在PicoBlaze中進(jìn)行處理得到晶振輸出頻率相對(duì)于GPS系統(tǒng)的頻率偏差,最后將結(jié)果作為D/A轉(zhuǎn)換模塊的輸入得到修正本地晶振頻率的控制電壓。


  1.2 測(cè)量原理

  時(shí)間間隔在FPGA中的測(cè)量的原理如圖2所示,使用1-pps秒脈沖信號(hào)與本地晶振分頻得到的100 kHz信號(hào)進(jìn)行比對(duì),得到的時(shí)差即是待測(cè)的時(shí)間間隔。由于只采樣兩者的上升沿間的時(shí)間間隔,所以用100 kHz分頻信號(hào)代替1 Hz秒信號(hào)與1-pps比對(duì),可以減小每次的測(cè)量值,方便數(shù)據(jù)處理。需要注意的是晶振相對(duì)于1-pps的時(shí)差范圍必須在100 kHz信號(hào)的一個(gè)周期內(nèi),即該信號(hào)的頻率決定了測(cè)量量程的大小,可以根據(jù)實(shí)際測(cè)量需要來決定該信號(hào)的頻率。


  圖2中T是待測(cè)的時(shí)間間隔,τ1是計(jì)數(shù)時(shí)鐘周期,M是計(jì)數(shù)器在1-pps信號(hào)到來時(shí)的計(jì)數(shù)值,N是計(jì)數(shù)器在100 Hz信號(hào)到來時(shí)的計(jì)數(shù)值,nτ2是由于1-pps脈沖上升沿和計(jì)數(shù)時(shí)鐘上升沿不一致所引起的測(cè)量誤差,這部分誤差由內(nèi)插延遲線來測(cè)量。由于100 kHz信號(hào)由晶振分頻得到,它和計(jì)數(shù)時(shí)鐘同步,所以不會(huì)產(chǎn)生測(cè)量誤差。因此,待測(cè)的時(shí)間間隔可以表示為:


  1.3 延遲線模塊的設(shè)計(jì)

  為了在短時(shí)間內(nèi)校準(zhǔn)本地晶體振蕩器,使之與GPS系統(tǒng)同步,必須提高時(shí)間間隔的測(cè)量分辨率,在設(shè)計(jì)中使用了時(shí)間內(nèi)插技術(shù)。其基本原理是利用多個(gè)延時(shí)單元構(gòu)造延遲線,待測(cè)信號(hào)在延遲線中的傳播信息便可以用來進(jìn)行時(shí)間間隔測(cè)量。延遲線的實(shí)現(xiàn)主要依賴于內(nèi)插延遲單元延時(shí)的均勻性,內(nèi)插延遲單元的單位延時(shí)決定了時(shí)間間隔測(cè)量系統(tǒng)的分辨率。在FPGA中實(shí)現(xiàn)時(shí)間內(nèi)插,關(guān)鍵是在其結(jié)構(gòu)的基礎(chǔ)上利用內(nèi)部已有資源構(gòu)造出延遲線


上一頁 1 2 3 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉