新聞中心

EEPW首頁 > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 基于SOPC的低電壓電泳芯片系統(tǒng)平臺(tái)設(shè)計(jì)

基于SOPC的低電壓電泳芯片系統(tǒng)平臺(tái)設(shè)計(jì)

作者: 時(shí)間:2009-05-12 來源:網(wǎng)絡(luò) 收藏

  1  引 言

本文引用地址:http://butianyuan.cn/article/192054.htm

  生物芯片的控制、檢測(cè)與分析是生物芯片技術(shù)中的重要組成部分,最早的應(yīng)用起源于毛細(xì)管的檢測(cè),其目的是實(shí)現(xiàn)基因片段的分離。從的研究現(xiàn)狀可以看出,目前研究主要是將毛細(xì)管電泳技術(shù)移植到以玻璃、硅、有機(jī)物等材料為基片的芯片中。利用電泳較短的分離溝道和良好的散熱特性,在較高的場(chǎng)強(qiáng)下完成快速、高效的分離分析。但由于其工作電壓高(一般在幾千伏左右)、體積較大、進(jìn)樣、分離、檢測(cè)多為分離組裝式,實(shí)驗(yàn)室局限性強(qiáng),不適應(yīng)在芯片上完成化學(xué)反應(yīng)及檢測(cè)、分析的發(fā)展。為此近年來,設(shè)計(jì)開發(fā)、便攜式、高集成度的生物芯片控制與檢測(cè)一直以來是研究人員研究的熱點(diǎn)[1-4]。本文著重討論了基于Altera公司FPGA的嵌入式處理器NiosII內(nèi)核及軟、硬件設(shè)計(jì)技術(shù)在毛細(xì)管 (Low Voltage Integrated Capillary Electrophoresis Chip, LVICEC)控制與采集中的應(yīng)用。

  2 LVICEC運(yùn)動(dòng)梯度電勢(shì)控制原理

  毛細(xì)管電泳芯片通常以玻璃、石英、硅、塑料等為基質(zhì),運(yùn)用MEMS加工技術(shù)刻蝕出直徑為微米級(jí)的通道網(wǎng)絡(luò),在這些網(wǎng)絡(luò)中,以電場(chǎng)為驅(qū)動(dòng)力,根據(jù)不同離子、分子、以及細(xì)胞在電場(chǎng)作用下運(yùn)動(dòng)速度的不同,對(duì)混合物(離子、分子、細(xì)胞等)實(shí)現(xiàn)分離。通常采用的電泳電壓為高電壓,如Jacobson等所采用的 35KV/cm。較高的分離電壓制約了電泳芯片向集成化、便攜式、低成本的方向發(fā)展[5]。而分離的思想在于,在電泳分離的通道上,按一定控制算法,分段、運(yùn)動(dòng)式交替施加分離電壓,在較短長(zhǎng)度的分離通道上采用低電壓供電方式得到較高電場(chǎng)分布,其控制原理及運(yùn)動(dòng)模型見圖1所示。

  設(shè)分離電壓為V,初始分離間距為2a, 分別為第j 次所加的場(chǎng)強(qiáng)、循環(huán)次數(shù)、電壓施加的時(shí)間及第j次分離完成后的總分離長(zhǎng)度。分離過程中,首先在分離電極陣列1,3之間施加電壓V(E1=V/2a),驅(qū)動(dòng)樣品組分向正方向運(yùn)動(dòng),在恒定的時(shí)間t1段內(nèi),以恒定的電場(chǎng)強(qiáng)度E1將電壓V施加在2,4分離電極陣列之間,依次類推,直至以t1和E1為控制時(shí)間和分離場(chǎng)強(qiáng)的第1階段的循環(huán)次數(shù)c1結(jié)束,然后增加電壓所施加的長(zhǎng)度E2=V/3a進(jìn)入控制時(shí)間為t2分離場(chǎng)強(qiáng)為E2循環(huán)次數(shù)為c2的第2階段,如此遞推,在分離通道上分段、交替循環(huán)地施加分離電壓,從而形成運(yùn)動(dòng)的梯度電勢(shì)完成樣品組分的分離。

低電壓毛細(xì)管電泳芯片控制原理及運(yùn)動(dòng)模型示意圖

圖1 低電壓毛細(xì)管電泳芯片控制原理及運(yùn)動(dòng)模型示意圖

  3 低電壓電泳芯片系統(tǒng)硬件平臺(tái)的設(shè)計(jì)

  3.1 系統(tǒng)硬件的設(shè)計(jì)方案

  系統(tǒng)的設(shè)計(jì)思想是先通過負(fù)壓進(jìn)樣后,在低電壓運(yùn)動(dòng)控制器的作用下,分段、交替輸出分離電壓到分離電極上,形成一定的運(yùn)動(dòng)梯度電場(chǎng),待分離組分在梯度電場(chǎng)的作用下,呈現(xiàn)出不同的分離速率,后經(jīng)檢測(cè)器處的信號(hào)采集電路,在NIOSII處理器的控制下將電泳信號(hào)保存到存儲(chǔ)器中,通過一定的信息輸出方式,最終將電泳信號(hào)傳到PC機(jī)中,進(jìn)行后續(xù)的電泳圖譜分析與處理?;?a class="contentlabel" href="http://butianyuan.cn/news/listbylabel/label/SOPC">SOPC的低電壓電泳芯片控制與采集硬件系統(tǒng)主要由低電壓電泳芯片、負(fù)壓進(jìn)樣控制電路、低電壓運(yùn)動(dòng)電壓控制模塊、電泳信號(hào)采集及處理電路模塊、SDRAM存儲(chǔ)器、閃速存儲(chǔ)器flash、操作控制輸入電路、信息輸出電路等部分組成。

  基于 的低電壓電泳芯片系統(tǒng)平臺(tái)硬件的總體設(shè)計(jì)方案如圖2所示。

系統(tǒng)總體設(shè)計(jì)框圖

圖2 系統(tǒng)總體設(shè)計(jì)框圖

  低電壓毛細(xì)管電泳芯片采用MEMS加工技術(shù),在ITO玻璃基片上經(jīng)清洗、烘干、正膠光刻ITO圖形、濕法腐蝕ITO薄膜、去膠、清洗、烘干等工藝后形成低電壓微電極陣列及電導(dǎo)檢測(cè)器,在玻璃蓋片上經(jīng)清洗、烘干、負(fù)膠光刻、濕法腐蝕、去膠、清洗、烘干等工藝后形成緩沖池、進(jìn)樣溝道以及分離溝道,最后經(jīng)玻-玻鍵合制備而成。


上一頁 1 2 3 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉