用于高頻接收器和發(fā)射器的鎖相環(huán)-第三部分
本系列第一部分介紹了鎖相環(huán)(PLL),說明了其基本架構(gòu)和工作原理。 另外舉例說明了PLL在通信系統(tǒng)中的用途。 在第二部分中,我們詳細(xì)考察了相位噪聲、參考雜散、輸出漏電流等關(guān)鍵性能規(guī)格,還考慮了它們對系統(tǒng)性能的影響。 在本部分中,我們將考察PLL頻率合成器的主要構(gòu)建模塊。 我們還將比較整數(shù)N和小數(shù)N架構(gòu)。 最后將總結(jié)市場上現(xiàn)有的VCO,同時(shí)列出ADI的現(xiàn)有頻率合成器系列。
本文引用地址:http://butianyuan.cn/article/201605/290712.htmPLL頻率合成器基本構(gòu)建模塊
PLL頻率合成器可以從多個(gè)基本構(gòu)建模塊的角度來考察。 我們在前面已經(jīng)提到過這個(gè)問題,下面將更加詳細(xì)地進(jìn)行探討:
鑒頻鑒相器(PFD)
參考計(jì)數(shù)器(R)
反饋計(jì)數(shù)器(N)
鑒頻鑒相器(PFD)
頻率合成器的核心是鑒相器,也稱鑒頻鑒相器。 在鑒相器中,將比較參考頻率信號與從VCO輸出端反饋回來的信號,結(jié)果得到的誤差信號用于驅(qū)動環(huán)路濾波器和VCO。 在數(shù)字PLL (DPLL)中,鑒相器或鑒頻鑒相器是一個(gè)邏輯元件。三種最常用的實(shí)現(xiàn)方法為:
異或(EXOR)柵極
J-K觸發(fā)器
數(shù)字鑒頻鑒相器
這里,我們只考慮PFD,這也是ADF4110和ADF4210頻率合成器系列中使用的元件,因?yàn)榕cEXOR柵極和J-K觸發(fā)器不同,處于解鎖狀態(tài)時(shí),其輸出為頻差以及兩個(gè)輸入間相差的函數(shù)。
圖1所示為PFD的一種實(shí)現(xiàn)方案,該類器件基本上由兩個(gè)D型觸發(fā)器組成。 一路Q輸出使能正電流源,另一路Q輸出則使能負(fù)電流源。 假設(shè)本設(shè)計(jì)中D型觸發(fā)器由正邊沿觸發(fā),則狀態(tài)為(Q1, Q2):
11—兩個(gè)輸出均為高電平,由反饋至觸發(fā)器上CLR引腳的AND柵極(U3)禁用。
00—P1和N1均關(guān)閉,輸出OUT實(shí)際處于高阻抗?fàn)顟B(tài)。
10—P1開啟,N1關(guān)閉,輸出位于V+。
01—P1關(guān)閉,N1開啟,輸出位于V–。
圖1. 運(yùn)用D型觸發(fā)器的典型PFD。
現(xiàn)在考慮系統(tǒng)失鎖且+IN處的頻率遠(yuǎn)高于–IN處的頻率時(shí)電路的性能表現(xiàn),如圖2所示。
圖2. PFD波形(鎖頻和鎖相均解除)。
由于+IN處的頻率遠(yuǎn)高于–IN處的頻率,因此輸出多數(shù)時(shí)間處于高電平狀態(tài)。 +IN上的第一個(gè)上升沿會發(fā)送輸出高電平,并且這種情況會一直持續(xù)到–IN上出現(xiàn)第一個(gè)上升沿。在實(shí)際的系統(tǒng)中,這就意味著輸出及VCO的輸入會被進(jìn)一步拉高,進(jìn)而造成–IN處的頻率增加。這恰恰是期望達(dá)到的效果。
如果+IN處的頻率遠(yuǎn)低于–IN處的,則會出現(xiàn)相反效果。 OUT處的輸出多數(shù)時(shí)間處于低電平狀態(tài)。 這會在負(fù)方向上驅(qū)動VCO,并再次使得–IN處的頻率更加接近+IN處的頻率,從而達(dá)到鎖定條件。 圖3顯示了輸入處于鎖頻和接近鎖相條件時(shí)的波形。
圖3. PFD波形(鎖頻,但相位鎖定解除)。
由于+IN領(lǐng)先于–IN,因此輸出為一系列正電流脈沖。 這些脈沖往往會驅(qū)動VCO,使得–IN信號變得與+IN信號相位對齊。
發(fā)生這種情況時(shí),如果U3和U1及U2的CLR輸入端之間沒有任何延遲元件,那么輸出可能會進(jìn)入高阻抗模式,從而既不會生成正電流脈沖,也不會生成負(fù)電流脈沖。 這并不是一種很好的狀況。 VCO會發(fā)生漂移,直到造成顯著的相位誤差并再次開始生成正電流脈沖或負(fù)電流脈沖。 這種循環(huán)會持續(xù)相當(dāng)長的一段時(shí)間,其影響是電荷泵的輸出會被某個(gè)信號(PFD輸入?yún)⒖碱l率的次諧波)調(diào)制。 由于這可能是一種低頻信號,因此無法通過環(huán)路濾波器進(jìn)行衰減,從而會導(dǎo)致VCO輸出頻譜中出現(xiàn)非常明顯的雜散,該現(xiàn)象稱為“間隙”效應(yīng)。 通過在U3的輸出端和U1及U2的CLR輸入端之間添加延遲元件,可以確保不會發(fā)生這種情況。 添加延遲元件后,即使+IN和–IN相位完全對齊時(shí),電荷泵輸出端仍會生成電流脈沖。 該延遲的持續(xù)時(shí)間等于在U3輸出處插入的延遲,稱為反沖防回差脈沖寬度。
參考計(jì)數(shù)器
在傳統(tǒng)的整數(shù)N分頻頻率合成器中,輸出頻率的分辨率由施加于鑒相器的參考頻率決定。 因此,舉例來說,如果需要200 kHz間距(如GSM電話中),那么參考頻率必須為200 kHz。 但是,獲取穩(wěn)定的200 kHz頻率源并不容易。 一種合理的做法是采用基于晶振的良好高頻源并對其進(jìn)行分頻。 例如,從10 MHz頻率基準(zhǔn)開始并進(jìn)行50分頻,就可以得到所需的頻率間隔。這種方法如圖4所示。
圖4 在PLL頻率合成器中使用參考計(jì)數(shù)器。
反饋計(jì)數(shù)器N
N計(jì)數(shù)器也稱為N分頻器,是用于設(shè)置PLL中輸入頻率和輸出頻率之間關(guān)系的可編程元件。 N計(jì)數(shù)器的復(fù)雜性逐年增長。 除簡單的N計(jì)數(shù)器之外,經(jīng)過發(fā)展,后來還包括“預(yù)分頻器”,后者可具有“雙模”。
這種結(jié)構(gòu)已經(jīng)發(fā)展成為下列情況下固有問題的一種解決方案:需要超高頻輸出時(shí)使用基本N分頻結(jié)構(gòu)來反饋至鑒相器。 例如,我們假設(shè)需要一個(gè)間距為10 Hz的900 MHz輸出。 可以使用10 MHz參考頻率并將R分頻器設(shè)為1000。然后,反饋中的N值必須為90,000。這意味著,至少需要一個(gè)能夠處理900 MHz輸入頻率的17位計(jì)數(shù)器。
為處理此范圍,需要考慮在可編程計(jì)數(shù)器之前加上一個(gè)固定計(jì)數(shù)器元件,以便將超高輸入頻率拉低至標(biāo)準(zhǔn)CMOS的工作頻率范圍內(nèi)。 該計(jì)數(shù)器稱為預(yù)分頻器,如圖5所示。
然而,使用標(biāo)準(zhǔn)的預(yù)分頻器會導(dǎo)致其他并發(fā)癥。 現(xiàn)在,系統(tǒng)分辨率降低(F1 × P)。 可通過使用雙模預(yù)分頻器來解決這個(gè)問題(圖6)。 這種方法可以享有標(biāo)準(zhǔn)預(yù)分頻器種種優(yōu)勢,又不會犧牲系統(tǒng)分辨率。 雙模預(yù)分頻器是一種可通過外部控制信號將分頻比從一個(gè)值切換為另一個(gè)值的計(jì)數(shù)器, 通過使用帶有A和B計(jì)數(shù)器的雙模預(yù)分頻器,仍可以保持F1的輸出分辨率。 不過,必須滿足下列條件:
圖5. 基本預(yù)分頻器。
圖6. 雙模預(yù)分頻器。
1.如果兩個(gè)計(jì)數(shù)器未超時(shí),其輸出信號都為高電平。
2.當(dāng)B計(jì)數(shù)器超時(shí)時(shí),其輸出變?yōu)榈碗娖?,并立即將兩個(gè)計(jì)數(shù)器加載至其預(yù)設(shè)值。
3.加載到B計(jì)數(shù)器的值必須始終大于加載到A計(jì)數(shù)器的值。
假設(shè)B計(jì)數(shù)器剛發(fā)生超時(shí)并且兩個(gè)計(jì)數(shù)器均已經(jīng)重新加載值A(chǔ)和B。我們來看看再次達(dá)到相同狀態(tài)所需的VCO周期數(shù)。
只要A計(jì)數(shù)器未超時(shí),預(yù)分頻器即會以P + 1進(jìn)行分頻。因此,每次預(yù)分頻器計(jì)數(shù)達(dá)到(P + 1)個(gè)VCO周期時(shí),A和B計(jì)數(shù)器都會遞減1。 這意味著,A計(jì)數(shù)器會在((P + 1) × A)個(gè)VCO周期后超時(shí)。 然后,預(yù)分頻器會切換至P分頻。也可以說,此時(shí)B計(jì)數(shù)器還有(B – A)個(gè)周期才會超時(shí)。 所需時(shí)間為: ((B – A) × P)。 現(xiàn)在,系統(tǒng)會返回到剛開始的初始條件。
所需的VCO周期總數(shù)為:
N = (A × (P + 1)) + ((B – A) × P)
N = (A × (P + 1)) + ((B – A) × P)
= AP + A + BP – AP
= AP + A + BP – AP
= A + BP
= A + BP
評論