新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > Linux內(nèi)核高-低端內(nèi)存設(shè)置代碼跟蹤(ARM構(gòu)架)

Linux內(nèi)核高-低端內(nèi)存設(shè)置代碼跟蹤(ARM構(gòu)架)

作者: 時(shí)間:2016-11-21 來源:網(wǎng)絡(luò) 收藏
對于ARM中內(nèi)核如何在啟動(dòng)的時(shí)候設(shè)置高低端內(nèi)存的分界線(也是邏輯地址與虛擬地址分界線(虛擬地址)減去那個(gè)固定的偏移),這里我稍微引導(dǎo)下(內(nèi)核分析使用Linux-3.0):
首先定位設(shè)置內(nèi)核虛擬地址起始位置(也就是內(nèi)核邏輯地址末端+1的地址)的文件:init.c (archarmmm),在這個(gè)文件中的void __init bootmem_init(void)函數(shù)如下
  1. void __init bootmem_init(void)
  2. {
  3. unsigned long min,max_low,max_high;
  4. max_low=max_high=0;
  5. find_limits(&min,&max_low,&max_high);
  6. arm_bootmem_init(min,max_low);
  7. /*
  8. *Sparsemem triestoallocate bootmeminmemory_present(),
  9. *so must be done after the fixed reservations
  10. */
  11. arm_memory_present();
  12. /*
  13. *sparse_init()needs the bootmem allocator upandrunning.
  14. */
  15. sparse_init();
  16. /*
  17. *Nowfree the memory-free_area_init_node needs
  18. *the sparse mem_map arrays initialized by sparse_init()
  19. *formemmap_init_zone(),otherwise all PFNs are invalid.
  20. */
  21. arm_bootmem_free(min,max_low,max_high);
  22. high_memory = __va(((phys_addr_t)max_low << PAGE_SHIFT) - 1) + 1;
  23. /*
  24. *This doesnt seemtobe used by the Linux memory manager any
  25. *more,butisused by ll_rw_block.Ifwe cangetrid of it,we
  26. *alsogetrid of some of the stuff above as well.
  27. *
  28. *Note:max_low_pfnandmax_pfn reflect the number of _pages_in
  29. *the system,notthe maximum PFN.
  30. */
  31. max_low_pfn=max_low-PHYS_PFN_OFFSET;
  32. max_pfn=max_high-PHYS_PFN_OFFSET;
  33. }
這個(gè)high_memory=__va(((phys_addr_t)max_low<<PAGE_SHIFT)-1)+1;語句就是關(guān)鍵。從這里可以知道m(xù)ax_low就是高端內(nèi)存的起始地址(物理地址)。那么這個(gè)max_low是如何得到的?其實(shí)看上面的代碼可以推測出,他其實(shí)是在find_limits(&min,&max_low,&max_high);中(在同一個(gè)文件中)被設(shè)置的:
  1. static void __init find_limits(unsigned long*min,unsigned long*max_low,
  2. unsigned long*max_high)
  3. {
  4. struct meminfo*mi=&meminfo;
  5. inti;
  6. *min=-1UL;
  7. *max_low=*max_high=0;
  8. for_each_bank(i,mi){
  9. struct membank*bank=&mi->bank[i];
  10. unsigned long start,end;
  11. start=bank_pfn_start(bank);
  12. end=bank_pfn_end(bank);
  13. if(*min>start)
  14. *min=start;
  15. if(*max_high<end)
  16. *max_high=end;
  17. if (bank->highmem)
  18. continue;
  19. if (*max_low < end)
  20. *max_low = end;
  21. }
  22. }
這個(gè)函數(shù)的意思很明顯:通過掃描struct meminfo*mi=&meminfo;(結(jié)構(gòu)體meminfo的數(shù)組)中的所有信息,設(shè)置三個(gè)指針?biāo)傅淖兞浚?/div>
  1. min :內(nèi)存物理地址起始
  2. max_low :低端內(nèi)存區(qū)物理地址末端
  3. max_high :高端內(nèi)存區(qū)物理地址末端
從上面可以看出,max_low和max_high所保存的地址不同就是由于bank->highmem造成的,它是內(nèi)存bank被設(shè)為高端內(nèi)存的依據(jù):
  1. “如果這個(gè)內(nèi)存bank是高端內(nèi)存(bank->highmem != 0),跳過max_low = end;語句,max_low和max_high將不同(結(jié)果實(shí)際上是max_high >max_low);
  2. 否則假設(shè)沒有一個(gè)內(nèi)存bank是高端內(nèi)存(所有bank->highmem == 0)max_low和max_high必然一致(高端內(nèi)存大小為0)”
當(dāng)然要實(shí)現(xiàn)這個(gè)函數(shù)的功能,必須保證meminfo所指數(shù)組中的所有bank是按照地址數(shù)據(jù)從小到大排序好的哦~~。但是這個(gè)大家不用擔(dān)心,后面會(huì)看到的:)
經(jīng)過上面的跟蹤,焦點(diǎn)集中到了全局變量(同一個(gè)文件中):
  1. struct meminfo meminfo;
這個(gè)結(jié)構(gòu)體的定義(setup.h (archarmincludeasm)):
  1. /*
  2. * Memory map description
  3. */
  4. #define NR_BANKS 8
  5. struct membank {
  6. phys_addr_t start;
  7. unsigned long size;
  8. unsigned int highmem;
  9. };
  10. struct meminfo {
  11. int nr_banks;
  12. struct membank bank[NR_BANKS];
  13. };
  14. extern struct meminfo meminfo;
  15. #define for_each_bank(iter,mi)
  16. for (iter = 0; iter < (mi)->nr_banks; iter++)
#define bank_pfn_start(bank) __phys_to_pfn((bank)->start)
#define bank_pfn_end(bank) __phys_to_pfn((bank)->start + (bank)->size)
#define bank_pfn_size(bank) ((bank)->size >> PAGE_SHIFT)
#define bank_phys_start(bank) (bank)->start
#define bank_phys_end(bank) ((bank)->start + (bank)->size)
#define bank_phys_size(bank) (bank)->size
只要找到初始化這個(gè)全局變量并完成排序的地方,就可以知道高端內(nèi)存是如何配置的了??!OK,明確目標(biāo),go on~~~
通過查找代碼,我們可以在setup.c (archarmkernel)這個(gè)文件中找到相關(guān)的代碼。在系統(tǒng)啟動(dòng)早期會(huì)運(yùn)行的函數(shù)(具體的順序你可以自行分析下ARM內(nèi)核的啟動(dòng)流程,以后我也會(huì)寫下)中有這樣一個(gè)函數(shù):
  1. void __init setup_arch(char **cmdline_p)
  2. {
  3. struct machine_desc *mdesc;
  4. unwind_init();
  5. setup_processor();
  6. mdesc = setup_machine_fdt(__atags_pointer);
  7. if (!mdesc)
  8. mdesc = setup_machine_tags(machine_arch_type);
  9. machine_desc = mdesc;
  10. machine_name = mdesc->name;
  11. if (mdesc->soft_reboot)
  12. reboot_setup("s");
  13. init_mm.start_code = (unsigned long) _text;
  14. init_mm.end_code = (unsigned long) _etext;
  15. init_mm.end_data = (unsigned long) _edata;
  16. init_mm.brk = (unsigned long) _end;
  17. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  18. *cmdline_p = cmd_line;
  19. parse_early_param();
  20. sanity_check_meminfo();
  21. arm_memblock_init(&meminfo, mdesc);
  22. paging_init(mdesc);
  23. request_standard_resources(mdesc);
  24. unflatten_device_tree();
  25. #ifdef CONFIG_SMP
  26. if (is_smp())
  27. smp_init_cpus();
  28. #endif
  29. reserve_crashkernel();
  30. cpu_init();
  31. tcm_init();
  32. #ifdef CONFIG_MULTI_IRQ_HANDLER
  33. handle_arch_irq = mdesc->handle_irq;
  34. #endif
  35. #ifdef CONFIG_VT
  36. #if defined(CONFIG_VGA_CONSOLE)
  37. conswitchp = &vga_con;
  38. #elif defined(CONFIG_DUMMY_CONSOLE)
  39. conswitchp = &dummy_con;
  40. #endif
  41. #endif
  42. early_trap_init();
  43. if (mdesc->init_early)
  44. mdesc->init_early();
  45. }
在上面的注釋中,我已經(jīng)表明了重點(diǎn)和解析,下面我細(xì)化下:
(1)獲取參數(shù)部分
通過parse_early_param();函數(shù)可以解析內(nèi)核啟動(dòng)參數(shù)中的許多字符串,但是對于我們這次分析內(nèi)存的話主要是分析以下兩個(gè)參數(shù):
mem=size@start參數(shù),她為初始化struct meminfo meminfo;(我們一直關(guān)注的內(nèi)存信息哦~)提供信息。具體的獲取信息的函數(shù)(同樣位于setup.c (archarmkernel)):
  1. int __init arm_add_memory(phys_addr_t start, unsigned long size)
  2. {
  3. struct membank *bank = &meminfo.bank[meminfo.nr_banks];
  4. if (meminfo.nr_banks >= NR_BANKS) {
  5. printk(KERN_CRIT "NR_BANKS too low, "
  6. "ignoring memory at 0xllxn", (long long)start);
  7. return -EINVAL;
  8. }
  9. /*
  10. * Ensure that start/size are aligned to a page boundary.
  11. * Size is appropriately rounded down, start is rounded up.
  12. */
  13. size -= start & ~PAGE_MASK;
  14. bank->start = PAGE_ALIGN(start);
  15. bank->size = size & PAGE_MASK;
  16. /*
  17. * Check whether this memory region has non-zero size or
  18. * invalid node number.
  19. */
  20. if (bank->size == 0)
  21. return -EINVAL;
  22. meminfo.nr_banks++;
  23. return 0;
  24. }
  25. /*
  26. * Pick out the memory size. We look for mem=size@start,
  27. * where start and size are "size[KkMm]"
  28. */
  29. static int __init early_mem(char *p)
  30. {
  31. static int usermem __initdata = 0;
  32. unsigned long size;
  33. phys_addr_t start;
  34. char *endp;
  35. /*
  36. * If the user specifies memory size, we
  37. * blow away any automatically generated
  38. * size.
  39. */
  40. if (usermem == 0) {
  41. usermem = 1;
  42. meminfo.nr_banks = 0;
  43. }
  44. start = PHYS_OFFSET;
  45. size = memparse(p, &endp);
  46. if (*endp == @)
  47. start = memparse(endp + 1, NULL);
  48. arm_add_memory(start, size);
  49. return 0;
  50. }
  51. early_param("mem", early_mem);
vmalloc=size參數(shù),她為初始化vmalloc_min(需要保留的內(nèi)核虛擬地址空間大小,也就是這個(gè)內(nèi)核虛擬地址空間中除去邏輯地址空間和必要的防止越界的保護(hù)空洞后最少要預(yù)留的地址空間)提供信息。具體的實(shí)現(xiàn)函數(shù)(位于mmu.c (archarmmm)):
  1. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  1. /*
  2. * vmalloc=size forces the vmalloc area to be exactly size
  3. * bytes. This can be used to increase (or decrease) the vmalloc
  4. * area - the default is 128m.
  5. */
  6. static int __init early_vmalloc(char *arg)
  7. {
  8. unsigned long vmalloc_reserve = memparse(arg, NULL);
  9. if (vmalloc_reserve < SZ_16M) {
  10. vmalloc_reserve = SZ_16M;
  11. printk(KERN_WARNING
  12. "vmalloc area too small, limiting to %luMBn",
  13. vmalloc_reserve >> 20);
  14. }
  15. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  16. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  17. printk(KERN_WARNING
  18. "vmalloc area is too big, limiting to %luMBn",
  19. vmalloc_reserve >> 20);
  20. }
  21. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  22. return 0;
  23. }
  24. early_param("vmalloc", early_vmalloc);
(2)在獲得了必要的信息(初始化好struct meminfo meminfo和vmalloc_min)后,內(nèi)核通過sanity_check_meminfo函數(shù)自動(dòng)去通過vmalloc_min信息來初始化每個(gè)meminfo.bank[?]中的highmem成員。此過程中如果有必要,將可能會(huì)改變meminfo中的bank數(shù)組。處理函數(shù)位于mmu.c (archarmmm):
  1. static phys_addr_t lowmem_limit __initdata = 0;
  2. void __init sanity_check_meminfo(void)
  3. {
  4. int i, j, highmem = 0;
  5. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  6. struct membank *bank = &meminfo.bank[j];
  7. *bank = meminfo.bank[i];
  8. #ifdef CONFIG_HIGHMEM
  9. if (__va(bank->start) >= vmalloc_min ||
  10. __va(bank->start) < (void *)PAGE_OFFSET)
  11. highmem = 1;
  12. bank->highmem = highmem;
  13. /*
  14. * Split those memory banks which are partially overlapping
  15. * the vmalloc area greatly simplifying things later.
  16. */
  17. if (__va(bank->start) < vmalloc_min &&
  18. bank->size > vmalloc_min - __va(bank->start)) {
  19. if (meminfo.nr_banks >= NR_BANKS) {
  20. printk(KERN_CRIT "NR_BANKS too low, "
  21. "ignoring high memoryn");
  22. } else {
  23. memmove(bank + 1, bank,
  24. (meminfo.nr_banks - i) * sizeof(*bank));
  25. meminfo.nr_banks++;
  26. i++;
  27. bank[1].size -= vmalloc_min - __va(bank->start);
  28. bank[1].start = __pa(vmalloc_min - 1) + 1;
  29. bank[1].highmem = highmem = 1;
  30. j++;
  31. }
  32. bank->size = vmalloc_min - __va(bank->start);
  33. }
  34. #else
  35. bank->highmem = highmem;
  36. /*
  37. * Check whether this memory bank would entirely overlap
  38. * the vmalloc area.
  39. */
  40. if (__va(bank->start) >= vmalloc_min ||
  41. __va(bank->start) < (void *)PAGE_OFFSET) {
  42. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  43. "(vmalloc region overlap).n",
  44. (unsigned long long)bank->start,
  45. (unsigned long long)bank->start + bank->size - 1);
  46. continue;
  47. }
  48. /*
  49. * Check whether this memory bank would partially overlap
  50. * the vmalloc area.
  51. */
  52. if (__va(bank->start + bank->size) > vmalloc_min ||
  53. __va(bank->start + bank->size) < __va(bank->start)) {
  54. unsigned long newsize = vmalloc_min - __va(bank->start);
  55. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  56. "to -%.8llx (vmalloc region overlap).n",
  57. (unsigned long long)bank->start,
  58. (unsigned long long)bank->start + bank->size - 1,
  59. (unsigned long long)bank->start + newsize - 1);
  60. bank->size = newsize;
  61. }
  62. #endif
  63. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  64. lowmem_limit = bank->start + bank->size;
  65. j++;
  66. }
  67. #ifdef CONFIG_HIGHMEM
  68. if (highmem) {
  69. const char *reason = NULL;
  70. if (cache_is_vipt_aliasing()) {
  71. /*
  72. * Interactions between kmap and other mappings
  73. * make highmem support with aliasing VIPT caches
  74. * rather difficult.
  75. */
  76. reason = "with VIPT aliasing cache";
  77. }
  78. if (reason) {
  79. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memoryn",
  80. reason);
  81. while (j > 0 && meminfo.bank[j - 1].highmem)
  82. j--;
  83. }
  84. }
  85. #endif
  86. meminfo.nr_banks = j;
  87. memblock_set_current_limit(lowmem_limit);
  88. }
(3)最后必須做的就是排序了,完成了這個(gè)工作就可以完全被我們上面提到的find_limits函數(shù)使用了,而這個(gè)工作就放在了接下來的arm_memblock_init(&meminfo, mdesc);中的一開頭:
  1. static int __init meminfo_cmp(const void *_a, const void *_b)
  2. {
  3. const struct membank *a = _a, *b = _b;
  4. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  5. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  6. }
  7. void __init arm_memblock_init(struct meminfo *mi, struct machine_desc *mdesc)
  8. {
  9. int i;
  10. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  11. memblock_init();
  12. for (i = 0; i < mi->nr_banks; i++)
  13. memblock_add(mi->bank[i].start, mi->bank[i].size);
  14. /* Register the kernel text, kernel data and initrd with memblock. */
  15. #ifdef CONFIG_XIP_KERNEL
  16. memblock_reserve(__pa(_sdata), _end - _sdata);
  17. #else
  18. memblock_reserve(__pa(_stext), _end - _stext);
  19. #endif
  20. #ifdef CONFIG_BLK_DEV_INITRD
  21. if (phys_initrd_size &&
  22. !memblock_is_region_memory(phys_initrd_start, phys_initrd_size)) {
  23. pr_err("INITRD: 0xlx+0xlx is not a memory region - disabling initrdn",
  24. phys_initrd_start, phys_initrd_size);
  25. phys_initrd_start = phys_initrd_size = 0;
  26. }
  27. if (phys_initrd_size &&
  28. memblock_is_region_reserved(phys_initrd_start, phys_initrd_size)) {
  29. pr_err("INITRD: 0xlx+0xlx overlaps in-use memory region - disabling initrdn",
  30. phys_initrd_start, phys_initrd_size);
  31. phys_initrd_start = phys_initrd_size = 0;
  32. }
  33. if (phys_initrd_size) {
  34. memblock_reserve(phys_initrd_start, phys_initrd_size);
  35. /* Now convert initrd to virtual addresses */
  36. initrd_start = __phys_to_virt(phys_initrd_start);
  37. initrd_end = initrd_start + phys_initrd_size;
  38. }
  39. #endif
  40. arm_mm_memblock_reserve();
  41. arm_dt_memblock_reserve();
  42. /* reserve any platform specific memblock areas */
  43. if (mdesc->reserve)
  44. mdesc->reserve();
  45. memblock_analyze();
  46. memblock_dump_all();
  47. }
通過上面的分析,整個(gè)高低端內(nèi)存是如何確定的基本就清晰了,這里總結(jié)一下:
ARM構(gòu)架中,高-低段內(nèi)存是內(nèi)核通過內(nèi)核啟動(dòng)參數(shù)(mem=size@start和vmalloc=size)來自動(dòng)配置的,如果沒有特殊去配置他,那么在普通的ARM系統(tǒng)中是不會(huì)有高端內(nèi)存存在的。除非你系統(tǒng)的RAM很大或vmalloc配置得很大,就很可能出現(xiàn)高端內(nèi)存。


評論


技術(shù)專區(qū)

關(guān)閉