無人機航磁測量系統(tǒng)通信協(xié)議轉(zhuǎn)換器的設(shè)計
鑒于無人機航磁測量系統(tǒng)具有經(jīng)濟、高效、安全的優(yōu)勢,其在小區(qū)域大比例尺航空物探應(yīng)用領(lǐng)域具有廣闊前景。近年來無人機航磁測量系統(tǒng)的研發(fā)與應(yīng)用日益受到世界航空地球物理勘查公司的廣泛關(guān)注?,F(xiàn)在國外已發(fā)展了多套技術(shù)成熟的無人機航磁測量系統(tǒng),并且得到了實際應(yīng)用。典型的無人機航磁系統(tǒng)包括Fugro公司的Georanger系統(tǒng)、Magsurvey公司的PrionUAV系統(tǒng)等。中國地質(zhì)科學(xué)院地球物理地球化學(xué)勘查研究所在航空物探領(lǐng)域有較深的理論研究和應(yīng)用實踐,在2012年聯(lián)合中國航天空氣動力研究院開展彩虹系列無人機航空物探系統(tǒng)的研究工作,包括飛行平臺的選型和改裝、航磁和航放測量設(shè)備的適用化改型、系統(tǒng)集成以及搭載試驗。其中涉及彩虹三無人機和AARC510航磁實時補償收錄系統(tǒng)的集成,主要工作任務(wù)包括遙測遙控通信接口設(shè)計以及通信協(xié)議轉(zhuǎn)換、位置姿態(tài)數(shù)據(jù)的解析及D/A變換、相關(guān)系統(tǒng)的電氣隔離和電平轉(zhuǎn)換等。
本文引用地址:http://butianyuan.cn/article/201611/319389.htm1
彩虹三無人機航磁測量系統(tǒng)總體設(shè)計框圖如圖1所示,主要由彩虹三無人機、通信協(xié)議轉(zhuǎn)換器、AARC510航磁儀三部分組成。
彩虹三無人機通信接口采用RS422通信協(xié)議,而航磁儀的數(shù)據(jù)和命令接口采用RS232通信協(xié)議,數(shù)據(jù)格式有較大的差異,波特率、同步碼和校驗方式均不相同,因此需要在這兩種接口之間設(shè)計專用的通信協(xié)議轉(zhuǎn)換電路和程序。航磁儀需要在實時補償過程中記錄飛行高度數(shù)據(jù)的模擬信號,而無人機鑒于安全的考慮,無法提供飛行高度的模擬信號,也需要設(shè)計數(shù)模轉(zhuǎn)換電路;在實際工作過程中,航磁儀GPS接收機會出現(xiàn)精度不足、容易丟星的情況,無人機可以提供差分高精度DGPS數(shù)據(jù),因此對位姿數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)GPS格式的變換也是必須的。此外無人機的電源地、信號地和外殼是相互分離的,即三地隔離。為了使無人機三地關(guān)系不發(fā)生變化,明確無人機的整個接地關(guān)系,消除飛行安全隱患,轉(zhuǎn)換器必需做到電源隔離、信號隔離、外殼隔離。為了達(dá)到以上的規(guī)范要求,設(shè)計了專門用于彩虹三無人機航磁測量系統(tǒng)的通信協(xié)議轉(zhuǎn)換器。
通信協(xié)議轉(zhuǎn)換器的主要工作流程由以下4部分組成:(1)無人機輸出28
2
2.1
STM32F407是ST(意法半導(dǎo)體)推出的以ARM
由于STM32F407微控制器具有強大的計算能力和豐富的外設(shè),選用此微控制器作為數(shù)據(jù)處理核心芯片將極大地簡化硬件電路設(shè)計,不需要使用專用串口FIFO芯片對數(shù)據(jù)進(jìn)行緩存,直接實時處理數(shù)據(jù)幀中的識別碼、校驗碼等,對其數(shù)據(jù)解包和封包的過程延時極其短暫,可以完成大數(shù)據(jù)量下的實時傳輸。
2.2
通信協(xié)議轉(zhuǎn)換器系統(tǒng)的硬件設(shè)計如下圖2所示。STM32F407芯片提供多達(dá)6個USART異步串行端口,通過使用MAX485和MAX232電平轉(zhuǎn)換芯片,將其分解為2個RS422電平標(biāo)準(zhǔn)端口和4個RS232電平標(biāo)準(zhǔn)端口;采用LM2576、LM1805將隔離后的28
3
3.1
如前所述,通信協(xié)議轉(zhuǎn)換器的最主要的功能是實現(xiàn)遙測遙控數(shù)據(jù)、位置姿態(tài)數(shù)據(jù)的解析,使設(shè)備之間通過RS422/RS232串口傳輸。為了正確、順利和實時地完成傳輸,不同的設(shè)備采用了不同定義的串口通信傳輸協(xié)議。多種傳輸協(xié)議都是基于幀傳輸?shù)姆绞?,將測控、位姿數(shù)據(jù)進(jìn)行分幀發(fā)送,并在傳輸過程中對單幀中的數(shù)據(jù)進(jìn)行和校驗。數(shù)據(jù)幀的構(gòu)成如下圖3所示。
上行遙控幀數(shù)據(jù)主要包括控制航磁儀的工作狀態(tài),如是否磁補償飛行、是否開始記錄文件、是否進(jìn)入標(biāo)定模式等信息。下行遙測數(shù)據(jù)主要包括航磁儀的測量數(shù)據(jù),如磁場強度大小、經(jīng)緯度及方向、系統(tǒng)工作狀態(tài)等信息。在STM32F407微控制器程序的控制下,對不同USART端口接收到的信息內(nèi)容解析后進(jìn)行隊列排序,相互之間采用多線程結(jié)構(gòu)調(diào)用設(shè)計,用以實現(xiàn)多任務(wù)的偽并行處理,完成了航磁儀測量數(shù)據(jù)傳輸協(xié)議和無人機鏈路傳輸協(xié)議的自動轉(zhuǎn)換。通過實際的測試,系統(tǒng)誤碼率幾乎為零,自動協(xié)議轉(zhuǎn)換時間遠(yuǎn)小于幀傳輸?shù)拈g隔時間,完全可以達(dá)到實時傳輸數(shù)據(jù)的要求。
3.2
飛控中心發(fā)出的位置姿態(tài)數(shù)據(jù)是無人機為航磁儀提供的經(jīng)緯度、姿態(tài)角、航向、雷達(dá)/氣壓高度等飛行狀態(tài)數(shù)據(jù),用以方便航磁儀進(jìn)行補償和收錄。無人機主要的位姿數(shù)據(jù)包括雙點差分DGPS、高精度無線電雷達(dá)等傳感器數(shù)據(jù)。相比較而言航磁儀內(nèi)置GPS接收機性能指標(biāo)明顯低于無人機提供的位姿數(shù)據(jù)。因此需要將原有的位姿數(shù)據(jù)解析轉(zhuǎn)化為GPS標(biāo)準(zhǔn)格式,并且將飛行高度信息進(jìn)行模擬量輸出。主要數(shù)據(jù)格式解析如下圖4所示。
4
本文主要描述了通過使用STM32F407嵌入式ARM芯片完成通信數(shù)據(jù)的收發(fā)、通信協(xié)議幀數(shù)據(jù)的識別、信息和校驗字的解包/封包分發(fā)的過程,使用LTC1655數(shù)模轉(zhuǎn)換芯片進(jìn)行飛行高度數(shù)據(jù)模擬變換,以及使用光電隔離芯片和DC/DC電源模塊完成電平轉(zhuǎn)換和電氣隔離。
評論