智能天線的測試項目及測試方法
1、引言 智能天線技術(shù)的研究起始于20世紀60年代,最初的研究對象是雷達天線陣,主要目的是提高雷達的性能和電子對抗的能力。隨著移動通信的發(fā)展及對移動通信電波傳播、組網(wǎng)技術(shù)、天線理論等方面研究的逐漸深入,數(shù)字信號處理芯片處理能力不斷提高,利用數(shù)字技術(shù)在基帶形成天線波束成為可能。到了20世紀90年代,陣列處理技術(shù)引入移動通信領(lǐng)域,很快形成了一個新的研究熱點——智能天線。其中,我國在享有獨立自主知識產(chǎn)權(quán)的TD-SCDMA技術(shù)中,就已經(jīng)成功地引進了智能天線技術(shù)。從某種程度上可以說,智能天線是3G區(qū)別于2G系統(tǒng)的關(guān)鍵標志之一。 智能天線是利用數(shù)字信號處理技術(shù)產(chǎn)生空間定向波束,使天線的主波束跟蹤用戶信號到達方向,旁瓣或零陷對準干擾信號到達方向,利用多個天線單元空間的正交性和信號在傳輸方向上的差別,將同頻率或同時隙、同碼道的信號區(qū)分開來,最大限度地利用有限的信道資源。它在提高系統(tǒng)通信質(zhì)量、緩解無線通信業(yè)務(wù)日益發(fā)展與頻譜資源不足的矛盾以及降低系統(tǒng)整體造價和改善系統(tǒng)管理等方面,都具有獨特的優(yōu)點。 既然智能天線有如此多的好處,那么隨著TD-SCDMA系統(tǒng)商用化的腳步越來越近,作為T D-SCDMA系統(tǒng)的關(guān)鍵技術(shù)之一的智能天線技術(shù)也越來越得到大家的重視,因此智能天線的測試方法也就顯得至關(guān)重要。 2、智能天線的分類 智能天線按照類型可以分為全向智能天線陣和定向智能天線陣。 對于定向智能天線陣來說,包括以下三類測試參數(shù)。 (1)電路參數(shù)。包括垂直面電下傾角預設(shè)置值、垂直面電下傾角精度、垂直面機械下傾范圍;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。 (2)校準參數(shù)。包括校準端口至各單元端口的耦合度、校準端口至各單元端口幅度最大偏差、校準端口至各單元端口相位最大偏差、校準端口駐波比、校準通道耦合方向性。 (3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平和前后比、廣播波束水平面半功率波束寬度、視軸增益、視軸增益Φ=±60°處電平下降、半功率波束寬度內(nèi)的電平波動。 對于全向智能天線陣來說,也可以分為三類測試參數(shù)。 (1)電路參數(shù)。包括垂直面電下傾角預設(shè)置值、垂直面電下傾角精度;輸入阻抗、各單元端口駐波比、相鄰單元端口隔離度、每端口連續(xù)波功率容量。 (2)校準參數(shù)。包括校準端口至各單元端口的耦合度、校準端口至各單元端口幅度最大偏差、校準端口至各單元端口相位最大偏差、校準端口駐波比、校準通道耦合方向性。 (3)性能參數(shù)。包括各單元端口有源輸入回波損耗、垂直面半功率波束寬度、垂直面上部第一旁瓣抑制和下部第一零點填充;單元波束水平面半功率波束寬度、增益、前后比交叉極化比(軸向)和交叉極化比(±60°范圍內(nèi));業(yè)務(wù)波束水平面半功率波束寬度、視軸增益、水平面旁瓣電平、廣播波束視軸增益、方向圖圓度。 3、智能天線的測試項目及測試方法 下面針對智能天線不同于普通天線的測試項目進行介紹。 首先,智能天線比普通天線增加了校準端口,主要是為了動態(tài)地校準各個單元端口的幅度和相位的一致性,校準的準確與否直接決定了智能天線的應用效果,因此,對校準端口至各單元端口幅度最大偏差和校準端口至各單元端口相位最大偏差提出了相應的要求。在測試的過程中,校準端口與每個饋電端口形成一個校準通道,對任意端口進行測量得到相位/幅度誤差,在相同頻點上取所有測量值之間的最大偏差即得到本指標。 校準電路參數(shù)的測量示意如圖1所示。 圖1 天線校準電路測量示意 測量步驟如下: (1)將被測天線安裝在符合測量條件的自由空間或模擬自由空間; (2)按測量系統(tǒng)要求進行系統(tǒng)校準; (3)將測量系統(tǒng)與被測天線的校準端口和第i個饋電端口相連接,被測天線的其余端口一律接匹配負載,在工作頻率范圍內(nèi)進行傳輸系數(shù)S(i,CAL)的測量; (4)重復步驟(3),測試所有端口的S(i,CAL)值。 測出校準端口CAL至多個輻射端口i的傳輸系數(shù)S(i,CAL)后,對所有測試的S(i,CAL)值分別求模和求相角,將所有模曲線和相角曲線分別畫在兩張圖中,比較并分別求出最大的模(即幅度)偏差和相位偏差。 其次,是各單元端口有源輸入回波損耗。 有源輸入回波損耗區(qū)別于普通的回波損耗的地方在于它是在各個單元端口均有輸入信號,且是形成不同方向波束的情況下的回波損耗,因此將它叫作有源輸入回波損耗,測量示意如圖2所示。 圖2 有源回波損耗測量示意 本文引用地址:http://butianyuan.cn/article/201612/333831.htm有源輸入回波損耗間接測量步驟如下: 1)將被測天線安裝在符合測量條件 的自由空間或模擬自由空間;
單元波束是指 廣播波束是指對智能天線陣列施加特定的幅度和相位激勵所形成的全向覆蓋或扇區(qū)覆蓋的輻射方向圖。 對于定向智能天線,廣播波束可以分為30°、65°、90°和100°,分別對應于不同扇區(qū)的覆蓋要求。對于全向智能天線,廣播波束應為360°覆蓋,因此對其圓度提出了相應的要求。 不同的天線廠商,由于工藝和設(shè)計方式不同,廣播波束的幅相加權(quán)系數(shù)也有所區(qū)別,因此要求天線廠商提供不同廣播波束相應的幅相加權(quán)系數(shù)。 業(yè)務(wù)波束是指對智能天線陣列施加特定的幅度和相位激勵所形成的在工作角域內(nèi)具有任意波束指向掃描以及具有高增益窄波束的方向圖。 定向智能天線的第一種波束是指波束為天線端口輸入等幅同相信號得到的波束;另一種為各列單元的激勵幅度均勻且激勵相位呈線性遞增(差分相位規(guī)定為,其中:為工作頻段的中心頻點的波長、d為相鄰列的水平方向間距、=60°)時所得到的增益。 對于全向智能天線的第一種波束,按照以下公式: 其中,i=1,2,……N,N=8(對于8列陣)。 計算出相應天線端口的幅度和相位,然后進行激勵即可得到第一種波束,其中為每個工作頻段的中心頻點。 以增益測量為例,單元波束、業(yè)務(wù)波束和廣播波束的測試均可以采用圖3所示的測試框圖。 圖3 天線增益測試示意 測試條件如下。 式中:L——源天線與被測天線距離(m); 測量開始前,應準備好與測量參數(shù)相對應的天線陣列幅相加權(quán)饋電網(wǎng)絡(luò),在對其幅相加權(quán)值確認的同時,要在非被測網(wǎng)絡(luò)單元端接匹配負載的情況下,分別測量出總的饋電輸入端口到各陣列單元輸入端口傳輸系數(shù)的模|Si,j|(dB),并利用公式: (其中N為陣列單元饋電端口數(shù)),求出與測量參數(shù)對應的天線陣列加權(quán)饋電網(wǎng)絡(luò)的插入損耗Ln。 開始測量時,必須將被測天線和增益基準天線交替做水平和俯仰調(diào)整,以確保每一天線在水平和俯仰上的最佳指向,使其接收的功率電平為最大。 測量步驟如下。 (其中N為陣列單元饋電端口數(shù)),求出與測量參數(shù)對應的天線陣列加權(quán)饋電網(wǎng)絡(luò)的插入損耗Ln。 開始測量時,必須將被測天線和增益基準天線交替做水平和俯仰調(diào)整,以確保每一天線在水平和俯仰上的最佳指向,使其接收的功率電平為最大。 測量步驟如下。 5) 在同一個工作頻帶內(nèi),測量高、中、低三個頻率點,并計算分貝平均值。
方向圖圓度(全向天線)、半功率波束寬度、前后比、交叉極化比和天線電下傾角的測量方法同理也可以參考增益的測試框圖和測試步驟進行,在此就不詳細介紹了。 4、小結(jié) 智能天線測試的復雜度比普通天線要復雜得多,只有做好了以上的測試,才能對智能天線的性能進行全面的考核,將智能天線的優(yōu)勢發(fā)揮出來。 |
評論