【E問E答】如何減輕米勒電容所引起的寄生導通效應
當IGBT在開關時普遍會遇到的一個問題即寄生米勒電容開通期間的米勒平臺。米勒效應在單電源門極驅(qū)動的應用中影響是很明顯的。基于門極G與集電極C之間的耦合,在IGBT關斷期間會產(chǎn)生一個很高的瞬態(tài)dv/dt,這樣會引發(fā)門極VGE間電壓升高而導通,這是一個潛在的風險(如圖1)。
本文引用地址:http://butianyuan.cn/article/201707/361587.htm
寄生米勒電容引起的導通
在半橋拓撲中,當上管IGBT(S1)正在導通, 產(chǎn)生變化的電壓dV/dt加在下管IGBT(S1)C-E間。電流流經(jīng)S2的寄生米勒電容CCG 、門極驅(qū)動電阻RG 、內(nèi)部集成門極驅(qū)動電阻RDRIVER ,如圖1所示。電流大小大致可以如下公式進行估算:
這個電流產(chǎn)生使門極電阻兩端產(chǎn)生電壓差,這個電壓如果超過IGBT的門極驅(qū)動門限閾值,將導致寄生導通。設計工程師應該意識到IGBT節(jié)溫上升會導致IGBT門極驅(qū)動閾值會有所下降,通常就是mv/℃級的。
當下管IGBT(S2)導通時,寄生米勒電容引起的導通同樣會發(fā)生在S1上。
減緩米勒效應的解決方法
通常有三種傳統(tǒng)的方法來解決以上問題:第一種方法是改變門極電阻(如圖2);第二種方法是在在門極G和射極E之間增加電容(如圖3);第三種方法是采用負壓驅(qū)動(如圖4)。除此之外,還有一種簡單而有效的解決方案即有源鉗位技術(如圖5)。
獨立的門極開通和關斷電阻
門極導通電阻RGON影響IGBT導通期間的門極充電電壓和電流;增大這個電阻將減小門極充電的電壓和電流,但會增加開通損耗。
寄生米勒電容引起的導通通過減小關斷電阻RGOFF可以有效抑制。越小的RGOFF同樣也能減少IGBT的關斷損耗,然而需要付出的代價是在關斷期間由于雜散電感會產(chǎn)生很高的過壓尖峰和門極震蕩。
圖2:獨立的門極開通和關斷電阻
增加G-E間電容以限制米勒電流
G-E間增加電容CG將影響IGBT開關的特性。CG分擔了米勒電容產(chǎn)生的門極充電電流,鑒于這種情況,IGBT的總的輸入電容為CG||CG’。門極充電要達到門極驅(qū)動的閾值電壓需要更多的電荷(如圖3)。
圖3:G-E間增加電容
因為G-E間增加電容,驅(qū)動電源功耗會增加,相同的門極驅(qū)動電阻情況下IGBT的開關損耗也會增加。
采用負電源以提高門限電壓
采用門極負電壓來安全關斷,特別是IGBT模塊在100A以上的應用中,是很典型的運用。在IGBT模塊100A以下的應用中,處于成本原因考慮,負門極電壓驅(qū)動很少被采用。典型的負電源電壓電路如圖4。
圖4:負電源電壓
增加負電源供電增加設計復雜度,同時也增大設計尺寸。
有源米勒鉗位解決方案
為了避免RG優(yōu)化問題、CG的損耗和效率、負電源供電增加成本等問題,另一種通過門極G與射極E短路的方法被采用來抑制因為寄生米勒電容導致的意想不到的開通。這種方法可以在門極G與射極E之間增加三級管來實現(xiàn),在VGE電壓達到某個值時,門極G與射極E的短路開關(三級管)將觸發(fā)工作。這樣流經(jīng)米勒電容的電流將通過三極管旁路而不至于流向驅(qū)動器引腳VOUT。這種技術就叫有源米勒鉗位技術(如圖5)。
圖5:有源米勒鉗位采用外加三極管
增加三級管將增加驅(qū)動電路的復雜度。
結論
以上闡述的四種技術的對比如下表
在最近幾年時間里,高度集成的門極驅(qū)動器已經(jīng)包含有源米勒鉗位解決方案并帶有飽和壓降保護、欠電壓保護,有如AVAGO技術的ACPL-331J和ACPL-332J,對產(chǎn)品設計者和工業(yè)/消費生產(chǎn)商來說,這將降低設計的復雜度和產(chǎn)品尺寸。
評論