一文帶你讀懂深度學(xué)習(xí):AI 認識世界的方式如同小孩
這種類似的方式也可以用來給“貓”“房子”之類的網(wǎng)絡(luò)圖片打標簽。通過提取一組相同物體圖片的共有特征,比如將所有貓狗區(qū)分開的圖案,系統(tǒng)最終可以識別新圖片里的貓,即便新的圖片和之前的圖片沒有任何相似點。
本文引用地址:http://butianyuan.cn/article/201803/377575.htm一種自下而上的學(xué)習(xí)方式叫做無監(jiān)督學(xué)習(xí),現(xiàn)在仍處于非常初級的階段。但是它可以檢測數(shù)據(jù)中沒有打上標簽的圖案。它僅僅尋找能夠識別一個物體的特征束,比如說眼睛和鼻子通常會一起組成一張臉,這有別于背景中的樹或者山。
《自然》雜志2015年發(fā)表了一篇文章解釋了自下而上的方式發(fā)展的進城。Google下屬DeepMind的研究者們使用了一種結(jié)合了兩種不同自下而上的方式,即深度學(xué)習(xí)和強化學(xué)習(xí),從某種角度來說能讓電腦掌握玩雅達利2600電子游戲的訣竅。電腦一開始不知道游戲是如何運行的。最開始是通過隨機的猜測最佳行動方式并不斷接收結(jié)果反饋。深度學(xué)習(xí)幫助系統(tǒng)發(fā)現(xiàn)屏幕上的特征,而強化學(xué)習(xí)會根據(jù)特征返回一個高分。擁有該系統(tǒng)的電腦可以在幾個游戲上都達到流暢的水準,甚至在一些案例中,電腦玩的比高級玩家還要好。也就是說,其他人類可以掌握的游戲,該系統(tǒng)也可以順利掌握。
應(yīng)用AI學(xué)習(xí)大的數(shù)據(jù)集,比如幾百萬張Instagram上的圖片,郵件或者聲音片段,并進行圖像識別或者聲音識別時,有時會得到令人氣餒的結(jié)果。但即便如此,我們應(yīng)該記得,在有限的數(shù)據(jù)或者訓(xùn)練情況下,我的孫子仍然可以準確識別動物或者回答問題。對于五歲兒童非常簡單的問題,對于計算機來說仍然很困難。
要想讓計算機識別出一個絡(luò)腮胡子的臉需要幾百萬張案例,但是我們只需要幾張就可以了。通過大量的訓(xùn)練之后,計算機可能可以識別出一只之前沒有出現(xiàn)過的貓的圖片。但是這種識別能力與人類概括的能力是不同的。因為計算機軟件推理的方式不同,難免會有失誤。有些貓的圖片可能不會被標注為貓,也有可能會出現(xiàn)不是貓的圖片被標為貓的情況。但即便是模糊的一瞥,人類也不會弄錯。
發(fā)展之路
另外一種近些年改變了AI的深度學(xué)習(xí)方式則是自頂向下的模式。它假設(shè)我們可以從具體的數(shù)據(jù)中得到抽象的解釋,因為我們已經(jīng)知道了很多知識,并且大腦已經(jīng)可以理解各種基本的抽象概念了。就像科學(xué)家,我們可以使用這些概念來形成關(guān)于世界的假設(shè),并且預(yù)測假設(shè)正確的情況下會呈現(xiàn)出哪種情況,這是和自底向上的AI模式相反的方式。
回到剛剛我們討論的垃圾郵件的問題,這個概念可以得到很好地詮釋。之前我從某個期刊的編輯收到一封郵件,聲稱我在他們的期刊上發(fā)表了一篇文章,要和我討論一下。這個編輯的名字很奇怪。這封郵件既沒有尼日利亞,也沒有萬艾可,也沒有百萬美元獎金——可以說沒有任何垃圾郵件的特征。但是通過我已有的關(guān)于垃圾郵件的抽象認識,我就知道這封郵件值得懷疑。
首先,我知道發(fā)送垃圾郵件的人是想通過人的貪心來從其他人那里竊取金錢。我還知道有些合法的“開源”期刊開始通過向作者征收費用來盈利了。而且我的研究領(lǐng)域和這些期刊毫無關(guān)系。把這些信息全部整合在一起,我得出一個可靠的假設(shè)那就是這封郵件想誘惑一些學(xué)術(shù)人士付費在這些期刊上發(fā)表假的論文。只要通過這一個例子我就可以得出這樣的結(jié)論,如果我想繼續(xù)驗證我的假設(shè)的話,只需要使用一個搜索引擎工具來查看編輯的信譽度就可以了。
計算機科學(xué)家會把我的推理過程稱為生成模型,一種可以代表抽象概念,比如貪婪和欺騙的模型。這種模型同時也可以用來描述產(chǎn)生假設(shè)的過程——也就是得出這封郵件可能是垃圾郵件的結(jié)論為推斷過程。這個模型讓我理解了這種垃圾郵件是如何運作的,但同時也讓我思考了一下其他類型的垃圾郵件的模式。
在上個世紀五六十年代AI和認知科學(xué)第一波浪潮興起時,生成模型非常重要。但是生成模型也有局限性。首先,很多事實依據(jù)的模式理論上可以用不同的假設(shè)解釋。比如我剛剛提到的案例中,雖然看上去不太像,但是那封郵件也可能是合法郵件。所以,近年來學(xué)界提出生成模型需要和或然性推理結(jié)合起來,這是領(lǐng)域內(nèi)的一次重要發(fā)展。其次,形成生成模型的基本概念的來源通常不是很清晰。
近年的一個自頂向下的方式的基本案例——貝葉斯模型也許可以解決這兩個問題。貝葉斯模型是以十八世紀的統(tǒng)計學(xué)家和哲學(xué)家托馬斯·貝葉斯的名字命名,該模型使用貝葉斯推論將生成模型和或然性理論結(jié)合起來。如果某個假設(shè)是對的,那么概率生成模型會告訴你看到對應(yīng)的數(shù)據(jù)型態(tài)的可能性。如果一封郵件是垃圾郵件,那么這封郵件可能迎合了讀者的貪婪之心。不過當(dāng)然,一封不是垃圾郵件的郵件也可能滿足讀者的貪婪。貝葉斯模型將潛在假設(shè)和你看到的數(shù)據(jù)結(jié)合起來,讓你清楚地分辨一封郵件到底是合法郵件還是垃圾郵件。
這種自頂向下的方式比自底向上的方式要更類似兒童學(xué)習(xí)的方式。這就是為什么過去15年里我和我的同事們一直將貝葉斯模型應(yīng)用在兒童學(xué)習(xí)研究中。我們的實驗室一直用這種方式來理解兒童學(xué)習(xí)因果關(guān)系的過程,并預(yù)測兒童何時以何種方式發(fā)展出新的關(guān)于世界的理解,或者更新他們已有的認知。
貝葉斯模型也是訓(xùn)練機器像人類那樣思考的最好的方式。2015年,麻省理工學(xué)院的JoshuaB.Tenenbaum和紐約大學(xué)的BrendenM.Lake以及他們的同事在《科學(xué)》雜志上發(fā)表了一篇研究論文。他們設(shè)計了一種人工智能系統(tǒng),可以認出陌生的手寫文字。這件事對人類來說很容易,但是對計算機來說則非常復(fù)雜。
想想你自己的辨別能力。即便你從來沒有見過日本的片假名,你還是可以發(fā)現(xiàn)片假名之間的區(qū)別。甚至你自己都可以重新寫出一些片假名或者設(shè)計類似片假名的文字,而且你會清楚的知道片假名和韓國文字,俄羅斯文字之間差異很大。這就是Tenenbaum的團隊設(shè)計的一種軟件。
通過自底向上的方法,計算機會從上千張樣例中找到合適的模式辨別新的文字。而貝葉斯模型則通過一個通用模型訓(xùn)練機器來寫文字,比如筆畫可以往左或者往右。當(dāng)該軟件寫完一個文字的時候,再寫下一個。
當(dāng)該軟件對一個現(xiàn)有文字進行識別時,軟件可以推測出寫出該文字的筆順,然后會自動設(shè)計出一組類似的筆順。該軟件識別文字并設(shè)計筆順的方式和我推理自己收到的郵件是不是垃圾郵件的方式是一樣的,但是Tenenbaum的模型的推理過程目的在于得到想要的文字。數(shù)據(jù)一樣的情況下,這種自頂向下的程序比深度學(xué)習(xí)要有效的多,甚至接近人類表現(xiàn)。
完美融合
自底向上和自頂向下的方式都是深度學(xué)習(xí)的有效方式,并且各有優(yōu)劣。使用自底向上的方式,計算機不需要理解任何有關(guān)貓的內(nèi)容,但是需要大量的數(shù)據(jù)來訓(xùn)練。
貝葉斯模型只需要一小部分數(shù)據(jù),便可以大范圍應(yīng)用。但是這種自頂而下的方式需要對正確的假設(shè)做大量的解釋。兩種方式的設(shè)計者可能會碰到同樣的問題。這兩種方式都只適合用來解決一些簡單清晰的問題,比如識別手寫的文字或者貓的圖片或者是玩Atari游戲。
但是兒童學(xué)習(xí)的過程卻沒有這種限制。發(fā)展心理學(xué)家們發(fā)現(xiàn)兒童在某種程度上能融合這兩種方式的優(yōu)點,并且最大化應(yīng)用這兩種方式。像我的孫子學(xué)習(xí)的時候只需要一兩個例子,就像自頂而下的方式。但是他某種程度上也會通過這些數(shù)據(jù)整理出關(guān)于這些例子的抽象概念,就像自底向上的方式。
我的孫子可以做的事情還有很多。他可以很快地辨認貓和字母,甚至可以得出一些遠遠超出他的經(jīng)驗和背景知識的推斷。他最近說,要是一個大人想變成孩子,就應(yīng)該不吃健康的蔬菜,因為這些東西讓孩子長成了大人。而我們卻不知道這種富有創(chuàng)意的推理是從哪里來的。
當(dāng)我們聽到人工智能對人類是一種威脅這種觀點的時候,我們應(yīng)該想到人類大腦的神秘力量。人工智能和機器學(xué)習(xí)聽起來很可怕,當(dāng)然從某種角度來說,確實也是。部隊在考慮用這些技術(shù)來控制武器。比起人工智能,人類的愚蠢有時候能帶來更大的威脅,我們應(yīng)該盡可能地正確地規(guī)范使用這些技術(shù)。摩爾定律早已表明,即便在理解人類思維上沒有什么革命性的理論,僅僅是數(shù)據(jù)和計算能力的大量增長也可以帶來計算結(jié)果的顯著提升,并且產(chǎn)生重要的具有實質(zhì)意義的結(jié)果。也就是說,人工智能的出現(xiàn)并不意味著顛覆世界。
評論