關 閉

新聞中心

EEPW首頁 > 工控自動化 > 設計應用 > 下一個自動化時代的新網宇實體系統(tǒng)影響

下一個自動化時代的新網宇實體系統(tǒng)影響

作者: 時間:2022-05-29 來源:CTIMES 收藏

工業(yè)發(fā)展的驅動力為何?決策者應該注意些什么?當許多人開始揣測時,意法半導體()以創(chuàng)新的如何開啟下一個時代為依據(jù)推導結論。在2022年國際固態(tài)電路會議(ISSCC 2022)上,意法半導體模擬、MEMS和傳感器產品部總裁Marco Cassis發(fā)表在傳感器、人工智能、通訊等領域取得的技術突破。同時,正思考以「下一個時代」為背景探討的新趨勢。

何謂下一個時代?
第一個自動化時代
自動化時代的概念非常廣泛,并涉及許多基礎性的問題。作為信息時代的產物,自動化時代指的是機器開始執(zhí)行復雜任務、幾乎沒有人機互動的時代。全球信息系統(tǒng)和生產數(shù)字化引發(fā)了第一個自動化時代。在那個時代,自動化為經濟社會帶來巨大的變化。制造業(yè)生產效率明顯提升,就業(yè)市場為新人才敞開大門。簡言之,自動化是第三次工業(yè)革命的核心,根據(jù)世界經濟論壇的數(shù)據(jù),未來幾年自動化發(fā)展將明顯持續(xù)加速。

圖片.png
圖1 : 機械自動化制造

下一個自動化時代
由于「(Cyber-Physical Systems;)」的概念帶來了技術融合,如今確實正在經歷一個新的自動化時代。是2017年正式提出的「智能系統(tǒng)概念,包含由物理組件和計算機建構成的互動網絡?!购喲灾?,具有傳感器和致動器,透過其連網的智能運算系統(tǒng)與世界互動。

前文引用了網宇實體系統(tǒng)的官方定義,許多人可能疑惑,網宇實體系統(tǒng)與物聯(lián)網系統(tǒng)有何不同?美國國家標準與技術研究院(NIST)意識到此問題,并給出了多種方法解釋兩者間的差異。在眾多解釋中,ST采納了網宇實體系統(tǒng)代表一個包含物聯(lián)網在內的超級集合概念。

確實,網宇實體系統(tǒng)還提供了控制系統(tǒng)和機器學習應用,而傳統(tǒng)物聯(lián)網平臺中大多不具有這類配置。雖然物聯(lián)網和網宇實體系統(tǒng)有許多共同之處,但網宇實體系統(tǒng)超越了傳統(tǒng)物聯(lián)網的范疇。事實上,網宇實體系統(tǒng)的控制和人工智能等兩大功能是引發(fā)下一個自動化時代的部分誘因。
圖片.png
 
圖2 : 慣性傳感器LSM6DSOX具有機器學習的核心。

嵌入式AI是下一個自動化時代的核心技術
提前數(shù)年入場的先發(fā)優(yōu)勢
時至今日的邊緣人工智能大眾化源自于市面提供了成熟的開發(fā)工具。微控制器機器學習開發(fā)工具NanoEdge AI Studio和STM32Cube.AI或LSM6DSOX MEMS的機器學習核心開發(fā)軟件Unico GUI,多年來持續(xù)更新迭代。ST也提供FP-AI-FACEREC1等開源樣本,讓開發(fā)人員在幾分鐘后就能創(chuàng)建一個機器學習應用程序。同樣地,ST的狀態(tài)監(jiān)測解決方案可滿足工業(yè)環(huán)境的可靠性要求。甚至還免費提供由 UCLA大學William Kaiser教授所設計的嵌入式機器學習課程,并透過 GitHub和ST機器學習核心庫與開源社群的開發(fā)者密切互動。

性能可靠、功能豐富的開發(fā)工具的出現(xiàn)對工作流程和業(yè)界造成了顛覆性變化。2018年,欲開發(fā)嵌入式機器學習應用的學生使用ST的開發(fā)工具并在學術環(huán)境下,經大學教授協(xié)助,終于開發(fā)出嵌入機器學習應用。今日,相似的項目僅需要點擊幾下鼠標即可完成。2018年,鮮少人知曉如何于嵌入式系統(tǒng)上使用機器學習技術。2020年,根據(jù)ST合作伙伴Siana設計公司介紹,越來越多客戶在尋求機器學習的應用,并實際應用。最近市面上可見販賣的智能手表或手機使用ST機器學習解決方案,以決定何時開啟屏幕或進行運動紀錄,而其功耗卻僅有一般的一小部分。

圖片.png
 
圖3 : 嵌入式人工智能是下一個自動化時代的核心技術。

在整個業(yè)界下的 ST
由前文可得知,ST的合作伙伴已自邊緣人工智能中受益,因為他們幾年前就有了開發(fā)邊緣AI所需的工具、文件和運算能力。分析師估計邊緣人工智能很快將經歷幻想破滅的低谷。大多數(shù)競爭工具皆是近期才出現(xiàn)的,因此開發(fā)人員仍在學習使用工具,并弄清楚用它們能做些什么。另一方面,ST工具已經存在許多年,所以ST的客戶已提前幾年預測到人工智能趨勢,正在有效地利用這項技術開發(fā)產品。

異質整合是下一個自動化時代的驅動力
異質整合為CPS賦能
網宇實體系統(tǒng)并不是新概念,NIST在2017年正式定義了這個概念,且事實上,早在2014年就有一個工作小組在進行此方面的研究,ST在2018年發(fā)表了首個關于此專題的論文,此后便不斷在探索網宇實體系統(tǒng)。而時至今日為何又開始關注此話題呢?因為創(chuàng)新正在使有影響力的異質整合技術成為CPS的核心技術。許多人熟悉傳統(tǒng)上涉及使用不同處理內核的異質計算。因為代工廠很難突破更小制程節(jié)點的物理限制,異質運算有助于摩爾定律持續(xù)下去。

Marco Cassis強調,因為從異質計算走向了異質整合,所以業(yè)界正在經歷一個新的自動化時代。事實上,ST不僅在同一顆芯片上整合不同的 Cortex-M 內核,而且還在做更大的事情。ST整合機器學習核心與環(huán)境傳感器,開創(chuàng)新的機器學習應用,也在利用GaN或SiC等新材料研制更多的功率組件,進而創(chuàng)建新型蜂巢式網絡。我們的相變化內存研發(fā)活動正在優(yōu)化汽車處理器的性能,而BCD(BIPOLAR-CMOS-DMOS)技術繼續(xù)讓芯片具有更復雜和多樣化的功能。

圖片.png
 
圖4 : 異質整合為新產品賦能

下一個自動化時代需要業(yè)界攜手合作
簡而言之,ST在見證下一個自動化時代,但也試圖提醒業(yè)界合作的重要性。隨著網宇實體設備變得越來越智慧,妥善保護設備的安全問題更需要被解決。此外,人工智能的出現(xiàn)意味著安全防御措施必須能夠抵御更強的攻擊。同樣地,業(yè)界必須為永續(xù)發(fā)展團結一致,下一個自動化時代必須應對氣候危機,并提出鼓舞人心的解決方案,以提振全體社群的信心。

本文引用地址:http://butianyuan.cn/article/202205/434609.htm


評論


相關推薦

技術專區(qū)

關閉