頻譜分析儀的工作原理
頻譜分析儀架構(gòu)猶如時(shí)域用途的示波器,外觀如圖1.2 所示,面板上布建許多功能控制按鍵,作為系統(tǒng)功能之調(diào)整與控制,系統(tǒng)主要的功能是在頻域里顯示輸入信號(hào)的頻譜特性。頻譜分析儀依信號(hào)處理方式的不同,一般有兩種類型;實(shí)時(shí)頻譜分析儀(Real-Time Spectrum Analyzer)與掃瞄調(diào)諧頻譜分析儀(Sweep-Tuned Spectrum Analyzer)。實(shí)時(shí)頻率分析儀的功能為在同一瞬間顯示頻域的信號(hào)振幅,其工作原理是針對不同的頻率信號(hào)而有相對應(yīng)的濾波器與檢知器(Detector),再經(jīng)由同步的多任務(wù)掃瞄器將信號(hào)傳送到CRT 屏幕上,其優(yōu)點(diǎn)是能顯示周期性雜散波(PeriodicRandom Waves)的瞬間反應(yīng),其缺點(diǎn)是價(jià)昂且性能受限于頻寬范圍、濾波器的數(shù)目與最大的多任務(wù)交換時(shí)間(Switching Time)。
最常用的頻譜分析儀是掃瞄調(diào)諧頻譜分析儀,其基本結(jié)構(gòu)類似超外差式接收器,工作原理是輸入信號(hào)經(jīng)衰減器直接外加到混波器,可調(diào)變的本地振蕩器經(jīng)與CRT 同步的掃瞄產(chǎn)生器產(chǎn)生隨時(shí)間作線性變化的振蕩頻率,經(jīng)混波器與輸入信號(hào)混波降頻后的中頻信號(hào)(IF)再放大、濾波與檢波傳送到CRT 的垂直方向板,因此在CRT 的縱軸顯示信號(hào)振幅與頻率的對應(yīng)關(guān)系,信號(hào)流程架構(gòu)如圖1.3 所示。
影響信號(hào)反應(yīng)的重要部份為濾波器頻寬,濾波器之特性為高斯濾波器(Gaussian-Shaped Filter),影響的功能就是量測時(shí)常見到的解析頻寬(RBW, Resolution Bandwidth)。RBW 代表兩個(gè)不同頻率的信號(hào)能夠被清楚的分辨出來的最低頻寬差異,兩個(gè)不同頻率的信號(hào)頻寬如低于頻譜分析儀的RBW,此時(shí)該兩信號(hào)將重迭,難以分辨,較低的RBW 固然有助于不同頻率信號(hào)的分辨與量測,低的RBW 將濾除較高頻率的信號(hào)成份,導(dǎo)致信號(hào)顯示時(shí)產(chǎn)生失真,失真值與設(shè)定的RBW 密切相關(guān),較高的RBW 固然有助于寬帶帶信號(hào)的偵測,將增加噪聲底層值(Noise Floor),降低量測靈敏度,對于偵測低強(qiáng)度的信號(hào)易產(chǎn)生阻礙,因此適當(dāng)?shù)腞BW 寬度是正確使用頻譜分析儀重要的概念。
圖1.2:頻譜分析儀的外觀
另外的視頻頻寬(VBW,Video Bandwidth)代表單一信號(hào)顯示在屏幕所需的最低頻寬。如前所說明,量測信號(hào)時(shí),視頻頻寬過與不及均非適宜,都將造成量測的困擾,如何調(diào)整必須加以了解。通常RBW 的頻寬大于等于VBW,調(diào)整RBW 而信號(hào)振幅并無產(chǎn)生明顯的變化,此時(shí)之RBW 頻寬即可加以采用。量測RF 視頻載波時(shí),信號(hào)經(jīng)設(shè)備內(nèi)部的混波器降頻后再加以放大、濾波(RBW 決定)及檢波顯示等流程,若掃描太快,RBW 濾波器將無法完全充電到信號(hào)的振幅峰值,因此必須維持足夠的掃描時(shí)間,而RBW 的寬度與掃描時(shí)間呈互動(dòng)關(guān)系,RBW 較大,掃描時(shí)間也較快,反之亦然,RBW 適當(dāng)寬度的選擇因而顯現(xiàn)其重要性。較寬的RBW 較能充分地反應(yīng)輸入信號(hào)的波形與振幅,但較低的RBW 將能區(qū)別不同頻率的信號(hào)。例如使用于6MHz 頻寬視訊頻道的量測,經(jīng)驗(yàn)得知,RBW 為300kHz 與3MHz 時(shí),載波振幅峰值并不產(chǎn)生顯著變化,量測6MHz的視頻信號(hào)通常選用300kHz 的RBW 以降低噪聲。天線信號(hào)量測時(shí),頻譜分析儀的展頻(Span)使用100MHz,獲得較寬廣的信號(hào)頻譜需求,RBW使用3MHz。這些的量測參數(shù)并非一成不變,將會(huì)依現(xiàn)場狀況及過去量測的經(jīng)驗(yàn)加以調(diào)整。
1.分析頻譜分析儀的訊息處理過程
在量測高頻信號(hào)時(shí),外差式的頻譜分析儀混波以后的中頻因放大之故,能得到較高的靈敏度,且改變中頻濾波器的頻帶寬度,能容易地改變頻率的分辨率,但由于超外差式的頻譜分析儀是在頻帶內(nèi)掃瞄之故,因此,除非使掃瞄時(shí)間趨近于零,無法得到輸入信號(hào)的實(shí)時(shí)(Real Time)反應(yīng),故欲得到與實(shí)時(shí)分析儀的性能一樣的超外差式頻譜分析儀,其掃瞄速度要非常之快,若用比中頻濾波器之時(shí)間常數(shù)小的掃瞄時(shí)間來掃瞄的話,則無法得到信號(hào)正確的振幅,因此欲提高頻譜分析儀之頻率分辨率,且要能得到準(zhǔn)確之響應(yīng),要有適當(dāng)?shù)膾呙樗俣取H粲帽戎蓄l濾波器之時(shí)間常數(shù)小的掃描時(shí)間來掃描的話,則無法得到信號(hào)的正確振幅。因此,欲提高頻譜分析儀之頻率分辨率,且要得到準(zhǔn)確之響應(yīng),要有適當(dāng)?shù)膾呙瓒?。由以上之?dāng)⑹?,可以得知超外差式頻譜分析儀無法分析瞬時(shí)信號(hào)(TransientSignal)或脈沖信號(hào)(Impulse Signal)的頻譜,而其主要應(yīng)用則在測試周期性的信號(hào)及其它雜散信號(hào)(Random Signal)的頻譜。頻譜分析儀系統(tǒng)內(nèi)部及面板顯示的特性,詳如附錄一的說明,對該內(nèi)容的了解將有助于頻譜分析儀的操作使用。一般本地振蕩器輸出信號(hào)的頻率均高于中頻信號(hào)的頻率,本地振蕩器輸出信號(hào)的頻率可被調(diào)整在諧波之頻率,亦即?IN=n??LO±?I F n=1, 2, 3.......(2)
由式(2)得知,頻譜分析儀的信號(hào)量測范圍,無形中己被拓寬,低于或高于本地振蕩器或其它諧波頻率的輸入信號(hào),均能被混波產(chǎn)生中頻。延伸輸入信號(hào)頻率的混波原理如圖1.4 所示,其中縱軸代表輸入信號(hào)(?IN),橫軸代表本地振蕩頻率(?LO),圖中的正負(fù)整數(shù)代表公式(2)中頻放大器對應(yīng)的正負(fù)號(hào)。
圖1.3:頻譜分析儀的信號(hào)流程
由圖1.4 可體會(huì)頻譜分析儀利用本地振蕩的諧波信號(hào)延伸輸入信號(hào)頻率的工作原理。然而圖1.4 可能對應(yīng)多個(gè)輸入信號(hào)頻率,為消除此一現(xiàn)象,在衰減器前面加入頻率預(yù)選器(Preselector),用來提升頻譜分析儀的動(dòng)態(tài)范圍,同時(shí)使輸出的結(jié)果能去除其它不必要的頻率而真正反應(yīng)輸入信號(hào)的頻率。
圖1.4:利用本地振蕩之諧波信號(hào)拓展信號(hào)頻率的原理
由以上得知超外差或頻譜分析儀無法分析瞬時(shí)信號(hào)(TransientSignal)或脈沖信號(hào)(Impulse Signal)的頻譜,而其主要應(yīng)用則在測試周期性的信號(hào)及其它隨機(jī)信號(hào)(Random Signal)的頻譜。
2.噪聲特性
由于電阻的熱敏效應(yīng),任何設(shè)備均具有噪聲,頻譜分析儀亦不例外,頻譜分析儀的噪聲,本質(zhì)上是熱噪聲,屬于隨機(jī)性(Random),它能被放大與衰減,由于系隨機(jī)性信號(hào),兩噪聲的結(jié)合只有相加而無法產(chǎn)生相減的效果。在頻帶范圍內(nèi)也相當(dāng)平坦,其頻寬遠(yuǎn)大于設(shè)備內(nèi)部電路的頻寬,檢測器檢知的噪聲值與設(shè)定的分辨率頻寬(RBW)有關(guān)。由于噪聲是隨機(jī)性迭加于信號(hào)功率上,因此顯示的噪聲準(zhǔn)位與分辨率頻寬成對數(shù)的關(guān)系,改變分辨率頻寬時(shí)噪聲隨之變化,噪聲改變量相關(guān)的數(shù)學(xué)式如下所示:
例如:頻寬從100kHz(BW1)調(diào)整到10kHz(BW2),則噪聲改變量為:
亦即降低噪聲量10dB (為原來的1/10),相對提高訊號(hào)與噪聲比10dB。由此可知,純粹要降低噪聲量,使用最窄寬度的頻寬將能達(dá)到目的。不論噪聲來之于外部或內(nèi)部產(chǎn)生,量測時(shí)均將影響信號(hào)振幅的準(zhǔn)確性,特別在低準(zhǔn)位信號(hào)時(shí),更是如此,噪聲太大時(shí),甚至掩蓋信號(hào)以致無法正確判斷信號(hào)的大小,影響量測質(zhì)量的兩種噪聲可概括為下列三大項(xiàng):
(1).產(chǎn)生于交換功能的數(shù)字電路、點(diǎn)火系統(tǒng)與DC 馬達(dá)脈沖噪聲,這類噪聲常見于EMI(Electromagnetic Interference)的討論領(lǐng)域里。
(2). 隨機(jī)性噪聲來之于自然界或電路的電子移動(dòng), 又稱之為KTBW (或稱熱敏)噪聲、Johnson 噪聲、寬帶噪聲或白氏(White)噪聲等,本書主要以熱敏噪聲為重點(diǎn),數(shù)學(xué)式為:
Pn =kTBW , (5)
其中: Pn =噪聲功率= 3.98*10?21 瓦/Hz 或-174dB/Hz
k=Boltzman 常數(shù),1.38*10?23 joule/oK
T=絕對溫度表示的常溫=290 oK
BW=系統(tǒng)的噪聲功率頻寬(Hz)。
在4MHz、75 Ω 、290 oK 時(shí)的噪聲功率為-59.1dBm。由噪聲功率得知,信號(hào)頻寬降低,系統(tǒng)噪聲功率隨之降低,信號(hào)的質(zhì)量以信號(hào)噪聲比表示
(SNR;Signal-to-Noise Ratio),信號(hào)強(qiáng)度(單位為dBm)與系統(tǒng)噪聲功
率(單位為dBm)的相減值即為信號(hào)噪聲比,數(shù)學(xué)式為:
3.匹配因素
量測設(shè)備的輸入阻抗有時(shí)無法匹配待測件連接線特性阻抗,根據(jù)電磁
理論,阻抗匹配時(shí),輸出功率最大且沒有其它不良的副作用,而阻抗不匹
配,將造成信號(hào)反射,影響系統(tǒng)頻率的穩(wěn)定與造成信號(hào)功率的損失。信號(hào)
在傳輸在線往返傳送將產(chǎn)生駐波及噪聲,進(jìn)而影響接收端的信號(hào)質(zhì)量與量
測值的準(zhǔn)確性。量測設(shè)備輸入阻抗與待測件組抗不匹配之缺點(diǎn)可規(guī)納為:
A.信號(hào)反射,傳輸纜在線產(chǎn)生駐波。
B.噪聲增大。
C.降低信號(hào)輸出功率。
D.影響系統(tǒng)頻率的穩(wěn)定。
E.影響量測值之準(zhǔn)確度。
更詳細(xì)的介紹請查看:頻譜分析儀原理及應(yīng)用
評論