新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 基于升降壓轉換器的LED照明驅動器設計

基于升降壓轉換器的LED照明驅動器設計

——
作者: 時間:2007-01-26 來源:《電子元器件應用》 收藏

因此,更好的做法是將led串聯起來。但該方法的缺點是,如果一個led 出現故障,則整個led串將停止工作。讓剩下的led串繼續(xù)工作的一個簡單辦法是將一個齊納二極管(其額定電壓大于led的最高電壓)與每個(或每組)led并聯,如圖1(b)所示。這樣,任何一個led發(fā)生故障后,其電流都會流到相應的齊納二極管上,led串的其余部分仍可正常工作。

本文引用地址:http://butianyuan.cn/article/20984.htm

基本的單階開關轉換器可分為三類:降壓轉換器、升壓轉換器和升降壓轉換器。當led串的電壓低于輸入電壓時,降壓轉換器圖2(a)是理想的選擇;當輸入電壓總是低于串輸出電壓時,則使用升壓轉換器比較合適圖2(b);當輸出電壓可能高于也可能低于輸入電壓時(由輸出或輸入變化引起),則采用升降壓轉換器圖2(c)比較合適。升壓轉換器的缺點是,輸入電壓的任何瞬變(可使輸入電壓升高并超過輸出電壓)都會導致led上流過很大電流(由于負載的低動態(tài)阻抗),從而損壞led。升降壓轉換器也可代替升壓轉換器,因為輸入電壓的瞬變不會影響led電流。

升降壓轉換器的工作原理

對于低電壓應用中的led驅動器,升降壓轉換器是一種不錯的選擇。其原因有它們可用高于和低于輸入電壓的電壓來驅動led串(升壓和降壓)、效率很高(很容易到達85%以上)、非連續(xù)工作模式可抑制輸入電壓的變化(提供優(yōu)良的線電壓調節(jié))、峰值電流控制模式允許轉換器調節(jié)led電流,而無需復雜的補償(簡化設計)、很容易實現線性和pwm led亮度調節(jié)、開關晶體管失效不會損壞led等等。圖2給出了降壓、升壓和升降壓轉換器與led串的連接電路。

但是,這種方法仍有缺點:一是峰值電流受控問題,因為采用非連續(xù)電流模式的升降壓轉換器是一種功率恒定的轉換器。因此,led串電壓的任何變化都會引起led電流的相應改變;另一個問題是led開路狀態(tài)會在電路中產生損壞轉換器的高電壓;此外,還需要額外的電路將恒定功率轉換器轉變?yōu)楹愣娏鬓D換器,并需要在無負載情況下保護轉換器。

圖3所示為具體的升降壓轉換器應用電路,該控制器內置了用于設定開關頻率的振蕩器。在開關周期之初,q1導通。由于輸入電壓vin加在電感上,電感電流(il(t))開始從零(初始穩(wěn)定狀態(tài))開始上升。當感應電流上升至預先設定的電流值(ipk)時,q1關閉。開關導通時間(ton)由下式確定:

ton=ipkl/vin

此時,存儲在電感內的總能量(j)為:

j=li2pk/2

這樣,盡管此時開關會關閉,但流經電感的電流并不會中斷。這會使二極管d1導通,并在電感兩端產生輸出電壓(-vo),這個負電壓會導致電感電流迅速下降。經過一定時間toff后,電感電流趨于零。此時間可通過下列公式來計算:

toff=ipkl/vo

為使轉換器工作在非連續(xù)導通模式下,開關導通時間與電感電流下降時間的總和必須小于或等于開關周期ts,以便確保在下一個開關周期時,電感電流能夠從零開始。

事實上,在輸入電壓最小和輸出電壓最大的情況下,(ton+toff)可取得最大值。因此,確保在這些電壓下轉換器工作于非連續(xù)導通模式可保證在任何情況下都能滿足下式所列的條件: ton+toff≤ts

轉換器從輸入端獲得的功率(pin)電感中的能量與開關頻率f的乘積:即:

pin=fsli2pk/2

假設led串的電壓(vo)恒定且效率為100%,那么led的電流(iled)為:

iled=pin/vled=li2pkfs/2v

在峰值電流控制模式下,ipk通常是一個固定值。因此,led電流完全獨立(理論上)于輸入電壓。在固定的ipk下,輸入電壓的上升(下降)會引起晶體管的導通時間成反比例減少(增加),這將提供很好的線電壓調節(jié)。在實際應用中,從控制ic檢測到電流峰值到gate引腳實際關斷之間的延遲會引起輸入功率變化。導通時間較短會由于延遲時間而出現更多誤差,因為延遲時間將會占導通時間相當大的部分。

實際上,led電流與led串的電壓成反比。一個標稱輸出為20 v和350 ma的電路,將在10 v輸出電壓時產生700 ma的電流,這顯然不是期望的結果。但是,通過使開關頻率與輸出電壓成正比,上述公式提供了一種將恒定功率轉換器轉換為恒定電壓轉換器的方法。

假設fs=kvo,其中k是常數,那么有:

iled=kli2pk/2

這樣,iled將獨立于輸入和輸出電壓。

回掃轉換器的另一個缺點是它易受輸出開路狀態(tài)的影響。當led開路時,存儲在電感內的能量在每次開關導通時間的最后都會被轉移到輸出電容里。這樣,缺少電容放電的負載將導致電容兩端的電壓逐漸上升,最后超過器件的標稱值并損壞功率級。因此,可通過增加額外電路來提供輸出電壓反饋及過壓保護。

輸出電壓反饋

圖4是一個可實現過壓保護和led開路保護的額外電路。實際上,很多峰值電流模式控制器ic都具有專用的rt引腳。與該引腳相連的電阻可用來設置內部電流,其內部電流用來給振蕩器電容(可以是內部或外部)充電。振蕩器電容上的斜坡電壓控制開關頻率,這樣,開關頻率與rt引腳的輸出電流成正比。電阻越小(大),電流就越大(小),開關頻率也就越高(低)?;谶@一原理,可利用輸出電壓反饋來調整開關頻率。

在圖4所示電路中,電阻r3和r4構成一個分壓器。r4上的電壓減去晶體管q2基極和發(fā)射極之間的壓降(vbe)就是r5上的電壓。因此,流經r5的電流(ir5)為:


該電流是利用匹配的晶體管對從控制ic的引腳rt獲得的。

圖4中的電阻r2用于啟動轉換器。在啟動狀態(tài)下,輸出電壓為零,因而ir5也為零。由于沒有來自控制器rt引腳的電流,所以轉換器無法啟動。增加電阻r2可以在啟動狀態(tài)下獲得一小部分電流,并使r2的大小滿足:

ir5>>v(rt)/r2

其中v(rt)是控制器rt引腳上的電壓。滿足該條件可確保轉換器的啟動,并將r2帶來的誤差降至最低。如選r3=r4,則有:

ir5>>vo/2r5

這里假定輸出電壓比q2的基極-發(fā)射極壓降大得多。

這樣,根據以上各公式便可以得到輸出led電流為:

iled=kicli2pk/(2×2r5)

這樣,led電流將不再決定于輸入或輸出電壓。采用電阻r6、晶體管q3和齊納二極管d2可增加過壓保護功能。在led開路狀態(tài)下,當開關導通時,電感存儲能量,當開關關閉時,該能量轉移到輸出電容上。因為沒有足夠的負載供電容放電,輸出電壓在每個周期都會逐漸升高。當電壓升高到超過齊納二極管的導通電壓時,由d2和r6組成的齊納二極管分支電路開始導通。這也提供了一條通過q3基極電流的路徑,使q3導通。此時,電阻r4實際上被短路。因此,q2的基極發(fā)射極的pn結將關閉,導致r5上的電流為零。這將停止控制器的內部振蕩直到輸出電壓降到齊納二極管電壓以下,以上過程繼續(xù)進行。這種猝發(fā)模式可將led開路狀態(tài)下的平均功率降至最小。這種過壓保護方法將強制控制ic進入低頻、低功率的工作模式。

齊納二極管電阻分支電路上的電流必須能在r6上產生足夠大的電壓,以便為晶體管基極-發(fā)射極之間的pn結提供偏置。

結束語

在帶有輸出電流反饋的開關led驅動器中,一般還需要反饋補償來穩(wěn)定轉換器,并調節(jié)電流以達到期望的電流值。這些反饋方案的瞬態(tài)響應性能是有限的,無法滿足led的pwm亮度調節(jié)所需要的快速開/關瞬態(tài)響應。然而,本文所描述的轉換器并不要求任何反饋補償。該控制方案所用的唯一反饋信息是通過傳感電阻獲得流經mosfet的峰值電流。因為轉換器在每個周期都存儲所需的能量,所以它可以對瞬態(tài)做出即時響應。因此它可以很方便地與pwm亮度調節(jié)方案一起工作。

升降壓轉換器是低直流電壓輸入led驅動器的有效解決方案,無論輸出電壓高于還是低于輸入電壓,它都可以驅動led串。此外,還可在轉換器中增加小型而低廉的額外電路以克服負載調節(jié)和無負載狀態(tài)下的問題。該轉換器易于實現,且在峰值電流模式控制時無需進行反饋補償沒計。它所具有的開環(huán)特性也使之成為那些需要pwm亮度調節(jié)的應用中的理想選擇。



評論


相關推薦

技術專區(qū)

關閉