新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 影響開關模式、DC-DC轉換器效率的主要因

影響開關模式、DC-DC轉換器效率的主要因

作者: 時間:2011-05-29 來源:網(wǎng)絡 收藏
)和0.19Ω (典型值)。最后,使用的同步整流電路。對于500mA負載,占空比為50%的開關電路,可以將低邊開關(或二極管)的損耗從225mW (假設二極管壓降為1V)降至34mW。

合理選擇SMPS IC

合理選擇SMPS IC的封裝、控制架構,并進行合理設計,可以有效提高轉換效率。

集成功率開關

功率開關集成到IC內(nèi)部時可以省去繁瑣的MOSFET或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應,可以在一定程度上提高效率。根據(jù)功率等級和電壓限制,可以把MOSFET、二極管(或同步整流MOSFET)集成到芯片內(nèi)部。將開關集成到芯片內(nèi)部的另一個好處是柵極驅動電路的尺寸已經(jīng)針對片內(nèi)MOSFET進行了優(yōu)化,因而無需將時間浪費在未知的分立MOSFET上。

靜態(tài)電流

電池供電設備特別關注IC規(guī)格中的靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于十倍或百倍的靜態(tài)電流IQ),IQ對效率的影響并不明顯,因為負載電流遠大于IQ,而隨著負載電流的降低,效率有下降的趨勢,因為IQ對應的功率占總功率的比例提高。這一點對于大多數(shù)時間處于休眠模式或其它低功耗模式的應用尤其重要,許多消費類產(chǎn)品即使在“關閉”狀態(tài)下,也需要保持鍵盤掃描或其它功能的供電,這時,無疑需要選擇具有極低IQ的電源。

電源架構對效率的提高

SMPS的控制架構是影響開關電源效率的關鍵因素之一。這一點我們已經(jīng)在同步整流架構中討論過,由于采用低導通電阻的MOSFET取代了功耗較大的開關二極管,可有效改善效率指標。

另一種重要的控制架構是針對輕載工作或較寬的負載范圍設計的,即跳脈沖模式,也稱為脈沖頻率調(diào)制(PFM)。與單純的PWM開關操作(在重載和輕載時均采用固定的開關頻率)不同,跳脈沖模式下轉換器工作在跳躍的開關周期,可以節(jié)省不必要的開關操作,進而提高效率。

跳脈沖模式下,在一段較長時間內(nèi)電感放電,將能量從電感傳遞給負載,以維持輸出電壓。當然,隨著負載吸收電流,輸出電壓也會跌落。當電壓跌落到設置門限時,將開啟一個新的開關周期,為電感充電并補充輸出電壓。

需要注意的是跳脈沖模式會產(chǎn)生與負載相關的輸出噪聲,這些噪聲由于分布在不同頻率(與固定頻率的PWM控制架構不同),很難濾除。

先進的SMPS IC會合理利用兩者的優(yōu)勢:重載時采用恒定PWM頻率;輕載時采用跳脈沖模式以提高效率,圖1所示IC即提供了這樣的工作模式。

當負載增加到一個較高的有效值時,跳脈沖波形將轉換到固定PWM,在標稱負載下噪聲很容易濾除。在整個工作范圍內(nèi),器件根據(jù)需要選擇跳脈沖模式和PWM模式,保持整體的最高效率(圖8)。

圖8中的曲線D、E、F所示效率曲線在固定PWM模式下,輕載時效率較低,但在重載時能夠提供很高的轉換效率(高達98%)。如果設置在輕載下保持固定PWM工作模式,IC將不會按照負載情況更改工作模式。這種情況下能夠使紋波保持在固定頻率,但浪費了一定功率。重載時,維持PWM開關操作所需的額外功率很小,遠遠低于輸出功率。另一方面,跳脈沖“空閑”模式下的效率曲線(圖8中的A、B、C)能夠在輕載時保持在較高水平,因為開關只在負載需要時開啟。對7V輸入曲線,在1mA負載的空閑模式下能夠獲得高于60%的效率。

影響開關模式、DC-DC轉換器效率的主要因
圖8. 降壓轉換器在PWM和空閑(跳脈沖)模式下效率曲線,注意:輕載時,空閑模式下的效率高于PWM模式。

優(yōu)化SMPS

開關電源因其高效率指標得到廣泛應用,但其效率仍然受SMPS電路的一些固有損耗的制約。設計開關電源時,需要仔細研究造成SMPS損耗的來源,合理選擇SMPS IC,從而充分利用器件的優(yōu)勢,為了在保持盡可能低的電路成本,甚至不增加電路成本的前提下獲得高效的SMPS,工程師需要做出全面的選擇。

無源元件損耗

我們已經(jīng)了解MOSFET和二極管會導致SMPS損耗。采用高品質的開關器件能夠大大提升效率,但它們并不是唯一能夠優(yōu)化電源效率的元件。

圖1詳細介紹了一個典型的降壓型轉換器IC的基本電路。該控制IC集成了兩個同步整流MOSFET,低RDS(ON) MOSFET,效率可達97%。這個電路中,開關元件集成在IC內(nèi)部,已經(jīng)為具體應用預先選擇了元器件。然而,為了進一步提高效率,設計人員還需關注無源元件—外部電感和電容,了解它們對功耗的影響。

電感功耗

阻性損耗

電感功耗包括線圈損耗和磁芯損耗兩個基本因素,線圈損耗歸結于線圈的直流電阻(DCR),磁芯損耗歸結于電感的磁特性。

DCR定義為以下電阻公式:

公式2

式中,ρ為線圈材料的電阻系數(shù),l為線圈長度,A為線圈橫截面積。

DCR將隨著線圈長度的增大而增大,隨著線圈橫截面積的增大而減小??梢岳迷撛瓌t判斷標準電感,確定所要求的不同電感值和尺寸。對一個固定的電感值,電感尺寸較小時,為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導致DCR增大;對于給定的電感尺寸,小電感值通常對應于小的DCR,因為較少的線圈數(shù)減少了線圈長度,可以使用線徑較粗的導線。

已知DCR和平均電感電流(具體取決于SMPS拓撲),電感的電阻損耗(PL(DCR))可以用下式估算:

PL(DCR) = LAVG2 × DCR

這里,IL(AVG)是流過電感的平均直流電流。對于降壓轉換器,平均電感電流是直流輸出電流。盡管DCR的大小直接影響電感電阻的功耗,該功耗與電感電流的平方成正比,因此,減小DCR是必要的。

另外,還需要注意的是:利用電感的平均電流計算PL(DCR) (如上述公式)時,得到的結果略低于實際損耗,因為實際電感電流為三角波。本文前面介紹的MOSFET傳導損耗計算中,利用對電感電流的波形進行積分可以獲得更準確的結果。更準確。當然也更復雜的計算公式如下:

PL(DCR) = (IP3 - IV3)/3 × DCR

式中IP和IV為電感電流波形的峰值和谷值。

磁芯損耗

磁芯損耗并不像傳導損耗那樣容易估算,很難估測。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。SMPS中,盡管平均直流電流流過電感,由于通過電感的開關電壓的變化產(chǎn)生的紋波電流導致磁芯周期性的磁通變化。

磁滯損耗源于每個交流周期中磁芯偶極子的重新排列所消耗的功率,可以將其看作磁場極性變化時偶極子相互摩擦產(chǎn)生的“摩擦”損耗,正比于頻率和磁通密度。

相反,渦流損耗則是磁芯中的時變磁通量引入的。由法拉第定律可知:交變磁通產(chǎn)生交變電壓。因此,這個交變電壓會產(chǎn)生局部電流,在磁芯電阻上產(chǎn)生I2R損耗。

磁芯材料對磁芯損耗的影響很大。SMPS電源中普遍使用的電感是鐵粉磁芯,鐵鎳鉬磁粉芯(MPP)的損耗最低,鐵粉芯成本最低,但磁芯損耗較大。

磁芯損耗可以通過計算磁芯磁通密度(B)的最大變化量估算,然后查看電感或鐵芯制造商提供的磁通密度和磁芯損耗(和頻率)圖表。峰值磁通密度可以通過幾種方式計算,公式可以在電感數(shù)據(jù)資料中的磁芯損耗曲線中找到。

相應地,如果磁芯面積和線圈數(shù)已知,可利用下式估計峰值磁通:

公式3

這里,B是峰值磁通密度(高斯),L是線圈電感(亨),ΔI是電感紋波電流峰峰值(安培),A是磁芯橫截面積(cm2),N是線圈匝數(shù)。

隨著互聯(lián)網(wǎng)的普及,可以方便地從網(wǎng)上下載資料、搜索器件信息,一些制造商提供了交互式電感功耗的計算軟件,幫助設計者估計功耗。使用這些工具能夠快捷、準確地估計應用電路中的功率損耗。例如,Coilcraft提供的在線電感磁芯損耗和銅耗計算公式,簡單輸入一些數(shù)據(jù)即可得到所選電感的磁芯損耗和銅耗。

電容損耗

與理想的電容模型相反,電容元件的實際物理特性導致了幾種損耗。電容在SMPS電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖1),電容的這些損耗降低了開關電源的效率。這些損耗主要表現(xiàn)在三個方面:等效串聯(lián)電阻損耗、漏電流損耗和電介質損耗。

電容的阻性損耗顯而易見。既然電流在每個開關周期流入、流出電容,電容固有的電阻(RC)將造成一定功耗。漏電流損



評論


相關推薦

技術專區(qū)

關閉