新聞中心

EEPW首頁(yè) > 光電顯示 > 設(shè)計(jì)應(yīng)用 > LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

作者: 時(shí)間:2011-03-30 來(lái)源:網(wǎng)絡(luò) 收藏
二極管的VF。從+25℃到+125℃,該引腳的測(cè)量結(jié)果產(chǎn)生線性響應(yīng),斜率大約為1.3mV/℃。一旦這項(xiàng)工作結(jié)束,就可以在測(cè)量所選 ESD 二極管VF 的同時(shí),讓器件在已知功耗下工作。當(dāng)VF 達(dá)到穩(wěn)態(tài)時(shí),RJ-A 將為:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  其中VF@TA 是ESD二極管在TJ=TA時(shí)的VF,VF@SS 是ESD二極管在已知功耗(PDISS)下TJ達(dá)到穩(wěn)定狀態(tài)溫度之后的VF。

  最后一種方法是使用MOSFET的導(dǎo)通電阻隨溫度而發(fā)生的變化。這種方法是在器件處于上電模式時(shí)使用內(nèi)部PFET來(lái)完成。LM3554上的上電模式是指器件停止開(kāi)關(guān)并持續(xù)打開(kāi)PFET。如果VIN升至比VOUT高150mV時(shí)就會(huì)出現(xiàn)這種情況。在那時(shí),升壓轉(zhuǎn)換器無(wú)需提升VOUT,而PFET會(huì)使VIN直接到VOUT 。

  因?yàn)殡娏饔行┹p微依賴MOSFET的導(dǎo)通電阻,所以有必要在電流接近目標(biāo)閃光電流時(shí)測(cè)量 PFET電阻。使用大測(cè)試電流的問(wèn)題是它們可能導(dǎo)致器件發(fā)熱??朔藛?wèn)題的方法是將閃光超時(shí)時(shí)間設(shè)置為最低 32ms,并在示波器上測(cè)量PFET的電壓降。在+25℃到+125℃的情況下,使用1.2A閃光電流,結(jié)果顯示 的斜率大約為 0.42mΩ/℃ 。要注意的一個(gè)事情是PFET通過(guò)VOUT引腳供電,因此VOUT=5V時(shí),其導(dǎo)通電阻會(huì)低于VOUT=3.9V時(shí)的電阻值。

  使用上述三種方法,當(dāng)PDISS=1.67W時(shí),使用熱量關(guān)機(jī)測(cè)量法得出的結(jié)果為45℃/W,使用ESD二極管VF測(cè)量法得出的結(jié)果為 42℃/W,使用PFET導(dǎo)通電阻法測(cè)量的結(jié)果為48℃/W。圖3顯示了在0.856A閃光測(cè)試電流脈沖期間,PFET的導(dǎo)通電阻以及I/NTC的ESD二極管的VF。器件的VIN設(shè)置為5V,超時(shí)時(shí)間設(shè)置為1024ms。V為3.18V時(shí),使得該電壓強(qiáng)制 LM3554 進(jìn)入上電模式。在這種模式下,功耗完全由PFET和電流源導(dǎo)致。

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  圖 3. 閃光脈沖期間 LM3554 PFET 的導(dǎo)通電阻和 LEDI/NETC 的 ESD 二極管。

  在穩(wěn)態(tài)下,LEDI/NTC的ESD二極管的VF為-622mV,對(duì)應(yīng)結(jié)溫 95.2℃(環(huán)境溫度為25℃時(shí))。在穩(wěn)定狀態(tài)下,測(cè)得的PFET導(dǎo)通電阻為154mΩ,對(duì)應(yīng)結(jié)溫105℃。圖3 還描繪了LM3554的熱容。VF和RPMOS的響應(yīng)表現(xiàn)呈現(xiàn)類似于一階RC的指數(shù)級(jí)上升,計(jì)算等式如下:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  熱容則為:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  使用ESD二極管的正向電壓時(shí)獲得的熱容為0.009J/℃,使用PFET導(dǎo)通電阻時(shí)獲得的熱容為0.0044 J/℃。溫度讀數(shù)之間的差異可能是由于器件上的溫度梯度而造成的。PFET緊鄰電流源,預(yù)計(jì)其溫度上升將較快,且溫度會(huì)比LEDI/NTC引腳的ESD二極管高,后者離IC 上的功率器件較遠(yuǎn)。造成這樣的溫度差異是由于器件核心區(qū)域兩個(gè)測(cè)量點(diǎn)之間的熱阻和熱容引起的。另外,響應(yīng)大約為單次常量指數(shù)。實(shí)際上,功耗會(huì)隨著PFET和電流源升溫而發(fā)生些微的變化。這將導(dǎo)致隨著結(jié)溫上升,PDISS也些微增加。

  當(dāng)處理脈沖工作器件(如閃光LED驅(qū)動(dòng) 器)時(shí),對(duì)熱阻抗模型比對(duì)單獨(dú)熱阻的考慮深入得多。例如,閃光脈沖電流為1.2A,VIN為5V且VLED為3.4V。在這種情況下,器件在上電模式下PDISS=2.14W。當(dāng)RJ-A為48℃/W且環(huán)境溫度為50℃時(shí),穩(wěn)定狀態(tài)模型指示核心溫度會(huì)上升至153℃,這比最高工作結(jié)溫高出28℃。如果我們考慮熱容(0.0044℃/J)并將200ms閃光脈沖寬度計(jì)算在內(nèi),則可以獲得對(duì)核心溫度更好的估算,大約為113℃。

  電感器和溫度

  迄今為止對(duì)關(guān)于LM3554和高溫的討論也適用于LM3554的功率電感。與半導(dǎo)體器件(如LM3554)一樣,功率電感器損耗過(guò)多熱量將改變器件特性并導(dǎo)致電感和 工作異常。功率電感溫度過(guò)高,通常會(huì)導(dǎo)致直流繞線電阻增加和飽和電流限制降低。

 電感器電阻

  電感線圈的電阻溫度系數(shù)導(dǎo)致電感直流電阻會(huì)隨著溫度變化。線圈通常為銅制,溫度系數(shù)約為 3.9mΩ/℃,計(jì)算其電阻的等式如下:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  或相當(dāng)于0.39%/℃變化。

  讓我們?cè)倏匆幌翷M3554,評(píng)估套件中指定的電感器是Toko生產(chǎn)的FDSE0312-2R2。在 TA= 25℃時(shí),測(cè)得的電阻為137mΩ。在 85℃時(shí),電阻變化 為50℃×0.39%=19.5%(或變?yōu)?64mΩ)。在RMS電感電流為2A且VIN=3.6V時(shí),電感電阻變化會(huì)導(dǎo)致效率降低約1.5%。

  電感器飽和度

  或許在高溫狀況下,功率電感最為關(guān)注的問(wèn)題是額定飽和電流下降。使用較大的RMS電流時(shí),內(nèi)部功耗導(dǎo)致電感溫度上升,從而降低電感的飽和點(diǎn)。在飽和時(shí),電感鐵磁核心材料已達(dá)到磁通密度(B(t)),該密度不再隨磁場(chǎng)強(qiáng)度(H(t))成正比增加。相反,當(dāng)飽和時(shí),由于電感電流增加而引起任何磁場(chǎng)強(qiáng)度增加,會(huì)導(dǎo)致非常小的磁通密度的增加。

  如果在示波器上查看開(kāi)關(guān)穩(wěn)壓器電感電流,我們會(huì)看到器件進(jìn)入飽和狀態(tài)時(shí),電感電流斜率增加。這相當(dāng)于電感下降。紋波 電流的增加將導(dǎo)致 RMS 電流和電感器的開(kāi)關(guān)損耗增加,這兩項(xiàng)都會(huì)增加電感的功耗并降低效率。

  電感器在特定點(diǎn)達(dá)到飽和時(shí)會(huì)產(chǎn)生突然的飽和響應(yīng),或者會(huì)與 FDSE0312-2R2 電感器一樣產(chǎn)生逐漸的飽和響應(yīng)。然而,電感器制造商通常會(huì)將飽和點(diǎn)指定為既定電流和溫度下電感值的特定百分比跌幅。

  圖4描繪了工作在飽和狀態(tài)下電感器的實(shí)例。該例子使用TDK生產(chǎn)的VLS4010-2R2(2.2μH)電感器,在進(jìn)入飽和狀態(tài)時(shí)出現(xiàn)急劇下降。當(dāng)采用最小閃光脈沖寬度32ms,在升壓模式下LM3554會(huì)顯示出這種效應(yīng)。較窄的脈沖寬度限制了電感器的自熱,從而可以通過(guò)調(diào)節(jié)環(huán)境溫度來(lái)控制電感器的溫度。

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  圖 4. 電感器飽和與溫度。

  圖4左上圖顯示了在飽和點(diǎn)以下工作的電感器,具有正常的三角電流波形,可由(V/L×Δt)算出。在峰值電流保持相同且溫度升至50℃(右上圖)時(shí),電感電流斜率開(kāi)始增至1.76A標(biāo)記附近,指示顯示電感器的飽和點(diǎn)隨著溫度上升而向下移動(dòng) 。當(dāng)溫度升到70℃, 然后升到85℃時(shí),隨著電感器達(dá)到飽和整個(gè)電流波形最終出現(xiàn)。

  估算電感溫度(熱阻抗)

  各種因素都會(huì)促使電感器的溫度上升。這些因素包括環(huán)境溫度、電感器的熱阻抗和電感器的內(nèi)部功耗。利用電感器的直流電阻隨溫度變化這一特性,我們可以比較準(zhǔn)確地估算電感器的工作溫度。這類似于使用ESD二極管或PFET導(dǎo)通電阻,在此將電感線圈用作內(nèi)部溫度計(jì)。

  返回到我們的電感器電阻與溫度對(duì)比的等式中去,通過(guò)兩個(gè)溫度下電感器電阻的比率可以用下面的等式算出ΔT:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  圖5中所示的測(cè)試示例在LM3554的電路中使用了VLS4010ST-2R2,直流電流階躍為1.65A。室溫時(shí)的電阻開(kāi)始時(shí)為65mΩ。超過(guò)30秒之后,電感器達(dá)到穩(wěn)態(tài),電阻變?yōu)?3mΩ,相應(yīng)的穩(wěn)態(tài)工作溫度大約為 56℃。

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  圖 5. 電感器熱響應(yīng)。

  使用熱阻(RT)的定義,可以獲得:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  這里要注意的一件事情是電感器的功耗是其線圈電阻的函數(shù),后者會(huì)隨著溫度發(fā)生變化。因此,需要考慮計(jì)算電感器在給定RT的TF。將RT的等式插入電感電阻與溫度等式并求解TF可以得出:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  其中k為

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  。

  圖5顯示等效的電感溫度上升與時(shí)間大約具有一階指數(shù)關(guān)系。這再次得出等式:

LED電源驅(qū)動(dòng)電路熱阻詳細(xì)計(jì)算方法

  采用下面等式算出的熱容:

LED<a class=電源熱阻詳細(xì)計(jì)算方法" src="/uploadfile/LED/uploadfile/201103/20110330091133443.jpg" wi

關(guān)鍵詞: LED 驅(qū)動(dòng)電路 電源

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉